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1. ,.ORDI NTE TRNA A FORMATi ON

let X, x2, ... , x, ... x,, denote the coordinates of a point in the configuration

space of a physical system. To every value of the index i there correspond, in general, a

set of values of several indices necessary to specify the variable. For example, if the

system is composed of several particles, there may be an index indicating the kind of par-

ticle, another specifying a particular particle from among several of the same kind; if xi is
a space coordinate another index, which may assume three different values, shall also be

described by the symbol xi , etc.

The values of a scalar physical quantity at the points of the configuration space

will be considered, by definition, to be independent of the reference system. In a particular

system t ahey iay be expressible as a certain function of the coordinates f(x , x2, "" )

If a change of reference system is made such that the point with coordinates x 1, x2 , .. , x,

in the original system has the new coordinates x x x in the new system, the def-

inition implies that the identity

Sf(x 1 ×2 %.. ,) " '(X , 1" x . ... .x"')( -1

is satisfied at every point of the •onffituration space.

One nay also think of the transformation as rotating the points of the configuration

napace or the physical system, leaving the reference frame unchanged. In either case, the

definition (1-1) expresses the fact that the value of the physical quantity at a physical

point is assumed invariant.

In general, the explicit form of the new function C in terms of the variables x

2 *, , x', will be different from that of the original function f in terms of x 1, x2,
If it is the same, the function is said to be symmetric under the transformation in question.

The study of the transformation properties of the eigenfunctions of physical systems is a

subject of considerable interest.

The coordinate transformations to be considered are rotations of the coordinate axes,
inversion at the origin, and permutations of the indices of identical particles. The coordinates

of a point in the original system and in the new one are related by a unitary transformation

xi(- X Rij xi (1-2)
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If we denote by x a coluhin vector with components X x 2, ... ,• x, and similarly for )', we

may write lq. (1-2) in matrix nfotation !

x' R x (1-)

The transformed function ] will be' d'n oted by Rf, and we may w rite Eq. (1-1) in the

form

fix) R f(Rx) SR f(SRx) (1-4)

The explicit form of die transformed functiion can be determined from the form of

f(x) and the transformation matrix R, by expressing x in terms of x"

R f(x3 f(-R-'lx3 11

The right-hand side may then be expressed in terms of an orthonormal set of basis functions

in the same variables, x'. The prines may then be omitted so that one arrives at an expression

of the form

Rf(x) = • " fi(x) (filIIf) (1-6)
1

where the coefficients depend only on the parameters characteriaing the transformation.

The transformation may be considered as an operator acting on functions to generate

other functions. The definition by means of an equation of the form (1-6) is consistent with

Eq. (1-1) when the right-hand side is interpreted as in Eq. (1-5).

It is perhaps worthwhile to illustrate the meaning of l-q. (164) by considering the

rase when the function f(x) is one of the coordinates themselves. In order to avoid confusion
we shall write

f1(x) xi(x) - i(1-7)

Eq. (1-5) is now

Rx;(x") x1(R Ix1 ) - :.(R')ijx'j (1-8)

If we now omit the prilies, we obtain an expression in the form of Eq (1-6)

Rxi(x) - S(R l)ijxi (1-9)

This is not merely the inverse relation of Eq. (1-2) relabelled, since the definition (1.1) is

implicit in the form of writing the left-hand side. We shall see the difference more clearly

1



when we consider the definitions, not equivalent to Eq. (1-1), adopted by other authors. One

should also notice that with the present definition we cannot identify xf with the transformed

function of xi.

The previous definition of the transformed function is adopted by Wigner 1 and

Edmonds 2 but it is not the only one followed, and care should be exercized when comparing

or making use of results and expressions in the literature. Some authors- define the trans-

formed function as the original function of the new coordinates

f(xl - Rf(x) - f(Rx) (1-10)

and therefore

SRf(x) - f(SRx) (1.11)

For the inverse transformation

R'f(x) - f(R-'x) (1-12)

This expression should be compared with Eq. (1-5). It may he seen that for a given function

I and a given transformation matrix R, the right-hand side in both equations is tile same (the

primes may be omitted). However, while Eq. (1-5) defines the corresponding operator as R,

the operator defined by Eq. (1-12) is tile inverse, R-1.

As before, we may consider the ease when the original function is one of die coor-

dinates. According to Eq. (1-10), we have now in place of Eq. (1-8)

Rxi(x) - fi(P I x i (1-13)

so that, according to this definition, the t:ansform of one of the coordinates is the corre-

sponding coordinate in the new reference system. In place of Eq. (1-9) we now have

Rxi(x) = !Rijxj (1-14)

It may be seen that the matrices whose elements are the coefficients appearing on the right-

hand sides of Eqs. (1-9) and (1-14) are inverse to each other.

It is convenient to point out the differences that these two definitions introduce in

the expressions for the transformation of the angular momentum eigenfunctions under rotations.

These are usually written in tile form

R(a.3y)Ijm) = Y1im ) D0m'( ) (1-15)
m 1



Wigner1 ,nd Edmonds 2 "adopt the definition corresponding to Eq. (1-4) while Rose3

and otherc follow the one corresponding to Eq. (0-1 0). For a given rotation characterized by
three E I,,l•r n .. . -.I dfic, ,ad lab Olr,,I n i on r,,,ti I fn sli,,m th r ',,ffirpntq 1 t (i) Q ) ( O.A

•"' " " ...... . ' .... . .. . .. . . ... - - --........------ M1 m-'l'g!

in their coriesponding expressions arc the e cincnotr; of matrices. D i(oai[y) wIlich arc the in-

verse of each oeter, so that
D (i) 0j)
... ,V[) )1 Giv wi ,,. -- n.,,,i,(,ff})* i•.. . (1-16)

Although their expressions do not appear at first sight to satisfy this relation, this is only

due to the fact that the three Eulerian angles arc designated by Wipncr as y, (3, and a, while

the same angles are designated as .a, (I, ar,,! y by RosaP,

Edmonds2 follows the sme defitnitions as Wigner and his expression for the D, () (afoy)

is also the same. However, his desigination of the above Eulerian angles is a, /, and y and

this is inconsistent with the definitions adoptedi. tis expressions are valid only if the labels

a and y are interchanged either in his definition of the Eulerian angles or in the expressions

for the elements 1 m) (u[oy) and those derived from it. This may be easily seen if one con-

siders that the operator R(afly), defined as the product

R(a[}y) - .R (u)ItY (0l) R,(y) (1-17)

corresponds, according to Eq. (1-1), to the product of three coordinate transformations

x" R 7 () x

x"-- R (fl) x" (1-1)

x"'- R . '(,) x"

or

x - IR7 ,,() R Y,4) R (y)l x

the first one being a rotation by an angle y about the original z-axis, and the last one a

rotation by a about the intermediate zS-axis.

EXAMPLES

We shall illustrate the transformation of the spherical hlarmonicsY (0, 4) under

some of the simplest coordinate transformations. The definition and some of the most

pertinent properties of (ie spherical harmonics are given in Appendix A.
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R (a). Rotation of the coordinate [Hame about the z-axis by an angle a.

The expressioi-i for the original polar angles of a point P in terms of the new ones

are (see Fig. 1-1)

0 0, a

Since

eim(('I a) r. eim oeim(i"

it follows that

R'(0, Yr' (0, ,) = Y'(o, ' 1 a) - cima y(i', 0,')

We can now omit the primes.

R,(U) Y' (0, 0) reirna Y-(0, •

We shall even omit the polar angles, for simplicity, and write

It (a) Y% e""nol YM (1.19)

Rx(n). Rotation about the x-axis by an angle a. (See Fig. 1-2)

0 = 2T - 0'

Since

E)= (I- ()_'C'O• )(cos 0' ) C (S 1'•' m (coS 0')

and

ei m( 2t-') = eimp"

it follows that

RX(rr) y•M ()-t y-•m (1-20)
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Ry (u). Rotation about the y-axis 1b y'f. (See, Fig. 1-3)

Since

0q •(..Cos 0") + )"{,f-' (Cos 0")

and

CeIn rr-0 ") ( 1)m e- m '(1-21)

we finally havw

R (n) Y' ( I)t ( f i y-iFn

INVTRSIt)N

Inversion through the ori iP (1Fig. 1-4)

0 .7 -0'

Since

0 ' (--cos 0') -(-- o- Fl) O (cos 0)
C

and

einlF(F* '-r) -_ ( l)-m ,tmim.

we finally obtain

I YV = (I)t Y m (1-22)
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2. BASIS FUNCTIONS, OPERATORS.

In what follows we shall use Dirac's notation whenever convenient (*). Functions

shall be labelled by one or several indices or quantum numbers, and written in the form

i . I( 0 ay...) (2-1)

Only the minimum necessary numnber ot indices will be retained. If several func-

tions are considered, the common indices will be omitted.

The Hermitian scalar product of two functions Ii) and ti) will be written as

f'i* /1i dr - (ijj) (ill)* (2-2)

SThe matrix elements of an operator P will be written as

(iMPhJ) ý (k!liP (pt Vi;o 1¢) (2-3)

SFor a Htermitian operator, I1 - 11

+ (i1l11j) = (0i!lI qCj) 1- OI il,/, (2-4

while for a unitary operator R- 1 R 1

S(ilR Ij) = (,/,illt qi) (R I ¢ il 0 j) (2-5)

Consider aset of basis functions i'1/1), 102), ..... Vill). We shall assume that they
form a complete orthonorinal set, so that

(¢iloi) ý 8(i. j) (2-6)

and an arbitrary function If) may be expanded in ternts of those of the basic set

If) = X koi) (¢'ilf) (2-7)

Similarly, the action of an operator R on the basis functions may be expressed in

the form

Ri/i.) = 1, t/i) (,/iRli) (2-8)

"*Due to typogrnphical limitations the usual angular brackets <> will be replaced by parcnthecscs es )

2-1



Mhe coefficients (Vfilill/i 1) are the matrix elements of the operator K in that basis.

If we consider the basi.- functions as the elements of a row vr-tnr IP anrid the trans-

formed functions RI0i) as the el.2ments of another row vector R kP, we can write the previous

expression in matrix form.

R , T 'V D(R) (2-9)

It may he noticed that on the right-hand side the matrix D(R) appears as a post-multiplier.

If two operators, R and S, are applied in succession, we have

S [RT] ý S[T D(R)I ( [S '11 D(R)

(2-10)

[S RI ' = IF [D(S) D(R)1

so that the matrix of the product (SR) is the product of the corresponding matrices, written

in the same order.

If we make a change of basis

'" 1 'It A (2-li)

the elements of A are the transformation coefficients

Ail = (¢i,,)(2-12)

The action of the operator R on the new basis functions is

R T", = [R •'1 A = 1P D(R)-A = T 'A- D(R) A (2-13)

and therefore, the matrix of the operator R in the new basis is related to the old one by a

similarity transformation

D'(R) = A'- D(R) A (2-14)

If the new basis functions also form an orthonormal set, the transformation is unitary,

At = A-' (2-15)

and the matrix of R in the new basis is

D'(R) - At D(R) A (2-16)
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While the matrix elements of' an operator in two different basis are different, (2-16),

we may ask whetiher there is 4n operator having the .. a.c .. a......iclitus in t[ie new basis

as the old operator had in the old basis, chat is

(V/jlPlj~ ) ý- (A ,q I P 'IaA ,j) (2-17)

If we multiply the operator P on the left by At (A'1)t and on the right by A- 1 A we

shall have

(,JiP],],) - (O'iAt(A'l)t PA 'AI'A j)
(2.18)

(A t/jj(AK')t P A•-1A M i)

Therefore, we obtain identical results with the operators

P in the basis Iti,)

and

(AY)t P A" in the basis JA 0j)

and both descriptions are equivalent. For a unitary transformation

(A-t)t P A-1  A P A-1  (2-19)

2-
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3. GROUP-THEORETICAL CONSIDERATIONS

Let 1,), 102) ..... I 0,d) be an orthonormal set of functions which under the oper-
ations of a symmetry group transform into linear combinations of themselves

R ) I , ) (V iP q, j) (3-1)

oor, in matrix notation,

R I' ' 1' D(R) (3-2)

The group of matrices D(R) constitute a representation of the group, and the set of
functions 1T is said to form a bas;is for the representation.

If we introduce a change of basis by means of a linear transformation (non-singular)

1t', ,'i; A (3-3)

the new basis functions transform as

R 11" V='JD '(R) (3-4)

The matrices of both representations are related by the similatity transformation

DuR) - A-' D(R) A (3-5)

and the two matrix representations are said to be equivalent.

For a given matrix repres.•ntation, D(R), the basis function I'/'I) is said to belong

to the i-th row of the representation, since its coefficients in the transformation expression

(3-1) are tlhe elements of the i-th row of the matrices D(R). The other functions are called

its partners. Notice that this definition is made in reference to a particular matrix presen-

tation. If an equivalent matrix representation is chosen, such as that afforded by the

matrices D(R), the function that belongs to the i-th row will be IjVi').

One may also consider the operations of the group as acting on the physical opera-
tors involved in the problem, rather than on the basis funLtions. An equivalent description

is obtained if the transform of an operator P under a (unitary) operation of the group is.

P'- RPR-t (3-6)

3-1
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As in the ca.se of the basis fnctions, the operators may also be claosified accord-

iog to their transformation properties.

For a given matrix representation D(R), if a set of operators Pp P2, .... Pd trans-

form under thc group operations in the form (compare with Eq. (3-1),

R P1 R- 1  Pi(¢,i]Rjqji) (3-7)

they are said to belong to that representation, and in particular Pi is said to belong to the

i-th row.

Of special interest are the symmetric operators. According to the preceding defini-

tion, an operator A is said to be symmetric if for every group operation

RA R = A (3-8)

or

o1 A A R 
(3-9)

that is, a symmetric operator commutes with all the operations of the group.

All the preceding considerations apply equally to both reducible and irreducible

representations. For irreducible representations some important theorems apply, and ,ve

shall refer to them briefly.

In what follows, functions that belong to irreducible representations will be

labelled by two indices, the first corresponding to the irreducible representation, the second

to the particular row to which they belong. Other additional labels will be necessary in

general, since there may be several sets of functions with the same transformation proper-

ties, but we shall omit them unless they are required. For an irreducible representation y,

the basis functions transform as

R Iy,,) = XlXX)(yxlRIjyg) (3-10)

The orthogonality relations of irreducible representations may be written in the form

XRa (yplR.itbX) (yX .Rjiyj, ,) h(~ (-1
d

where h is the order of the group and d the dimension of the irreducible representation.

In what follows we shall assume that the matrix representations are unitary. In

this case D.I(R) = Dt(R)

(ypIR'Iy ,)"- (yXlR lye)* (3-12)

3-2



and the orthogonality relations take the form

R%~ ~y0 (y '•yj' - (y,y ) &(pit~g)8), ' (3-13)

A very important theorem applying to the class of symmetric operators may be stated

as follows:

The matrix elements of symmetric operators between functions that belong to differ-

ent irreducible representations or to different rows of the same irreducible representation

are zero.

The proof may be given briefly. Consider the sets of functions Iay1L) and Ja'y'ji'),

the indices a and a' being necessary since we may have y - y' and it It ', Under the opera-

tions of the group they transform as

R layli) XX Y j ayX)yAlIRlyik) (3-)

Also

ARIay'"'14) X d' Ala' (y'),R ') (3-15)

If we take the Hermitian product of (3-14) and (3-15) and consider that

RtAR ý RtRA A (3-16)

we obtain

(aypIA a'I a"y'i)(

X AY,,(yXIRjyIL* (y'X1Rjy',') (ayAAja'y'.') (3-17)

By adding over all the operations of the group and introducing the orthogonality

relations

h(,yjp4Aja'Y`1L') = YX1X, (ayXjAjay'X) h &(y, y') B(p' rL 1 )(3-18)

d

d (

In addition, the right hand side is independent of IA, so that it is the same for all partners.

In particular, since the unit operator is symmetric, functions that belong to different

irreducible representations, or to different rows of the same irreducible representations,

are orthogonal.

3-3



P. rROjECTION OPERATORS AND SYMMETRY FUNCTIONS

If we have an orthonornial set ofbasis functions for each of the irreducible represen-

tations of a group, the matrices of the operators R of the group, in the representation

afforded by all those basis functions, of dimension h (S • dy)are of the form
y

D( 1 )(R) 0 0 0

0 D( 2)(R) 0 0

o 0 D(Y)(R) 0

0 0 0 D( )(R)

We can express those matrices in terms of very simple ones if we consider that any

matrix of order d may be expressed as a linear combination of (1
2 matrices of the same order,

each of which contains only one non-vanishing element in a particular row and column. For

example, any second order matrix may be expressed in terms of the four matrices

[ ] 0j ] [0 1i ] ,]and [1' 0]0-2
These may be considered as the matrices of four operators P1 1 , P22 , P12 and P21

in the space of two basis functions I1)and 12). The transformation equation (2-9) takes now

the forms - lthe fom P 111), P13112.)] =[11 ),12)] !1 0 (4-3)

or P1 1 ;1) = II), P1 112) - 0 (4-4)

Similarly, r, 1

[P1 2l1), P1212)] - [I1), 12)] L i (4-5)

or P-1 2 11) 0, P 1 212) I1) (4-6)

In general, Pa l/3 ") 1 a) S(3,f3') (4-7)

4-1



The operators P., are' "projection" operators, and the operators of the type P134

are called "ladder" operators or "step" operators.

In our case, the matrices (4-1) of the operators R have at most h( y d') non-

vanishing matrix elements, and may he expressed in terms of h matrices of the type men-
tioned. The corresponding operators will be designated by P(Y)

The fact that the only non-vanishing matrix element of (Y)is the one in the -th

row and the p-th column of the y representation may be expressed by

S•(A•,,;J?1)P )(=,tyty) (4-8)

They operate on the basis functions

P3ý 1;'P') = IYX) 8(y,y') 5(J1,JA') (4-9)

to give the same function, or a partner, or zero. They operate in the same form on each other
pY) P(V') - P 3(y,y') 8(pj) (4-10)

They are real

p(pY))* (y) (4-11)

They are not Hermitian, hut

(PA~)) tP(Y)(4-12)

The relations between the l3P operators and the operators R of the group are easily

established. From the previous considerations it is almost evident that

R =- ' P() (yXIRIy1) (4-13)

The inverse relation giving the operators P(Y) in terms of the R's is obtained byAI
multiplying both sides of Eq. (4-13) by (y,'JRlyf' * and adding over all the group opera-

tions, taking into account the orthogonality relations
S -,Y ) h •'

Y1R(y'A'IRly'i-')*R = Y_ y,,, >.t R (y IPRIY1')* (yXIRIyl4)= hd
or

p(y) =d
PX14 h YR (yAIRlyp)*R (4-14)

It may be pointed out that the expression (4-14) of these operators depends on the

particular matrix representation considered. This is only a reflection of the fact that the

4
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projection operators are defined in reference to a particular choice of axis, or basis func-

tions. One may also define a similar set of opraorn', P(Y) b-rn;-g t•e . ame r-cL-;n t- thrr(Y)
cha'racters as the P(YL bear to the elements of the irreducible representations.

(Y)d ,. (Y) (R)* R (4-15)

The expression (4-15) for these is independent of the particular form of the irre-

ducible representations.

The sum of all the projection operators

( pV) (-6YX 

(1

has the unit matrix of orderh'as representative, and may therefore be considered as the

unit operator.

Any arbitrary function on which the operators R may act, can be expanded as a

sum of functions that belong to the different rows of the different irreducible representations.

I•) I'X, IF) = XY I fYA) (4-17)

The individual projection operators P()kk select from the function If) that part IfyX)

which transforms according to a particular row X\ of a certain irreducible representation y,

P•)I f) = IfYX) (4-18)

The other operators P(AY)A, associated with the different rows of the same column,

applied to If) generate the partners of IfyX)

"PQ if) = IfY'\') (4-19)

That IfyX') is the A'-th partner of IfyX) follows easily from the fact that the operator

P(AY%) applied to the latter gives the former.

If the transformation of the function If) under che group operations R is known, the

symmetry functions fyX) can be obtained explicitly by means of Eq. 4-14)

IfYX) h (yXIRlyX)* RIf) (4-20)

IfYA'?) I hR (yA• I R i-yA)* "RIf) (4-21)

These are the basic equations used to obtain symmetry functions by use of projec-

tion operators.
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As a final remark we shall mention the fact that the operators associated with the

different rows of any given column of an irreducible representation transform, on pre-

multiplicationr by an operation of th, group, into linear combinations of themselves and in

exactly the same form as tie basis functionis.

Bly relabeling Eq. ('113) and multiplying both sides by P, , we obtain

H Y) 'It 'A 1, I,\ (O"'A , I i I ') (4-22)

and since

11' IL l'AV' ky( ,)") ,5 q )(4-23)

it follows that

' IP -A" PA (yA'RjIy) (4-24)

This may be compared with the transformation of the basis functions, Eq.(3-10)

RIy',) , 1),V) (yAj'Rlyp,) (4-25)

Symmetric operators commute with all the P(Y). This follows from the definition

of symmetric operators (Eqs. 3-8, 9) and the fact that the P)(Y) are linear combinations of

the operations of the group (Eq. 4-14). If A is symmetric,

A P(Y - A (4-26)

SYMMETRY FUNCTIONS

A more general problem than the expansion of a function in terms of symmetry

functions, in the form of Eq. (4-17), is the following: Given a set of functions Ifl), If2) ... ,
lfn) whose transformations under the operations of a group are known, it is desired to find

the linear combinations of them which belong to the different rows of the irreducible repre-

sentations of the group. This problem presents itself whenever the Itamiltonian or other

physical operators of interest are invariant or have some definite symmetry properties. It

is desirable to make a linear transformation from the original basis to a basis composed I
of symmetry functions.

We shall always assume that the given set of functions form an orthonormal basis

for a representation of the group. This implies that the transformed functions Rifl) can

always be expressed as a linear combination of functions whiclh are all part of the initial

I
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set. Otherwise, the basis should be completed by including the necessary number of inde-

j pendent functions generated by the action of the group operations on the 1fi) which are

orthogonal to them (and among themselves).

If the characters of the representation (generally reducible) afforded by the functions

Ifi) are designated by x(R), the number of independent sets of partner functions belonging
to the representation y, is given by the familiar expression

n I IX(Y)(R)*, x(R) (4-27)
h R

Accordingly, if an operator P() is applied to all the functions of the set Ifi), the number

of non-vanishing symmetry functions IftyX) generated is greater than or equal to ny. The

required number n of symmetry functions may be chosen quite arbitrarily, provided they
are independent, and the selected functions may he orthogonalized by any of the usual

methods. Actually, in virtue of some convenient properties of these operators, it is advan-

tageous to carry out the selection and the orthogonalization concurrently, thus insuring
also the linear independence of the selected symmetry functions. In order to illustrate the

method, let us first consider the conditions for the orthogonality between functions generated

by a given operator, I•).

The Htermitian product of the functions P•) If) and Ix(Y)Ig) is, according to Eqs.

(4-12) and (4-10)

(f~l) •)g):(fIP(Y)1g) (4-28)•

and therefore, orthogonality between If) and 1g) does not entail the orthogonality of the
"projected" functions. These are orthogonal only if If) is orthogonal to P(Y)lg), and conse-

quently Ig) to P(Y)If). In reference to any two functions of the initial set, since

PY)jf1) = i.) f (fliP(Y)lf.) (4-29)

the orthogonality between PY)If 1) and P•)If ) implies that P(Y) If.) does not "contain"

Ifi), and conversely, that P(Y)If ) does not contain Ifi). It may be noticed that the result

is independent of X, so that all the pairs of corresponding partner functions generated from

If,) and If1) have the same Hermitian scalar product. (Cf. Eq. 3-19)

The orthogonalization process may then be carried out as follows:

a) Select a function jg 1), which may be oneof the initial functions or a

linear combination of them.
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b) Let all the PkYassociated with a certain column it ope-rate on g 1 ). The

symmetry set of function.-- obtained may be takit as one of the nY possiblc

sets.

c) Select a function 1g 2), orthogonal to any Ph(Y)j 1), say to Pv) If 1).

d) Let all the P(Y)associated with the column v operate on jg2). The set

of symmetry functions obtained will be orthogonal to the previous one.

e) Selcct a function 1.3), orthogonal to P(Y)ig ) and Pp{Y)1g 2 ), etc.

The preceding sequence of operations should be continued until the ny independent

symmetry sets have been obtained. The process may be carried out by using only the

operators associated with one column (it-v= p ....p ), but the freedom of choice is often

important to simplify the process.

It may happen that one of the functions selected is such that P,(Y)Ig.) = 0. If it is

zero for one value of X, it will vanish also for all others, since

P(K) PX(Y)Igi) ý P(Y)lg.) = 0 (4-30)

This implies that the function Igi) does not contain any of the possible functions belonging

to the row fi, or that it is orthogonal to them. One may then select a new Igi) function

orthogonal to the old one as well as to all previous symmetry functions P(Y)lg,) which

belong to the row i, and continue the orthogonalization process.

The symmetry functions R()Igj) are not normalized, but the normalizing factor N

is easily determined. The Hermitian scalar product of one of the symmetry functions with

itself is

N' (gjjP(Y~ P() 1g.) = (g.IP(Y) 1g.) (4-31)

This is the same for all partners, as the result is independent of X.

If the function is one of the initial Ifi) this result is especially simple, as

(fijP(Y)jfi) is the coefficient of IQf) itself in the expression (4-29) for P(Y)•tf). The normal-

ized symmetry functions are given by

f i.P fY) "/- p(V) fi) (4-32)
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Once the symmetry functions have been determined, the change of basis may be performed

I by means of the transformation

1P)Lgi) X ifi) (fjlP.XI•lgJ) (4-33)

As already mentioned, the only non-vanishing elements of symmetric operators in the new
basis are those between functions which belong to the same row of the same irreducible

representation, Eq. (3-20)

I There is a further important theorem arising from the fact that symmetric operators

commute with all the P(Y), (Eq. 4-26), and from the multiplication properties of these
operators (Eq. 4-10). If the symmetry functions are obtained by means of the projection
operators, the matrix elements may be simplified as follows

(P (Y)gj A I P(Y) g.) (P I g g Z

(4.34)
PV V IA(YI g ()( (Y)g. A I g)

SIn particular, if only the operators P(Y) corresponding to the column tt are used

I (Pa()g~l A I P){)gj) = (gil AI P(), gi) = .P(Y•2 g IA I gi) (4-35)

I As might be expected, the results are also independent of the particular row, )X, of the

representation.

!
!
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5. TRANSFORMATION OF THE ANGULAR MOMENTUM

EIGENFUNCTIONS UNDER ROTATIONS

A rotation of the frame of reference that brings the set of axes x, y, z, into coin-

cidence with the new set x I y', z', may be considered as the product of three succesive

rotations by the Eulerian angles 7, (3, y, that may be described as follows:

a) A rotation by y about the z-axis, leading to the intermediate set of axes

x " , y ," z'.

b) A rotation by f3 about the intermediate y ''-axis.

c) A rotation bya about the new z'-axis, leading the final set of axes x~y'z.

These operations are illustrated in Fig. 5-t. All rotations are considered in the

positive sense. We may write the transformation matrix, Eq. (1-18) as the product

R(af-•y) -- R *-(a) Ry 00() Rz(y) (5-1)

The corresponding product of operators, defined as in Eq. (1-17) is

R(afly) = R (a) R (09) R (y) (5-2)

The usual ranges for the Eulerian angles are

0 < a < 2 v

0 < y < 2n? (5-3a)

but for j 0, the only other parameter necessary to specify the rotation is a + y and

similarly, for - v only the difference a - y is relevant.

This choice of limits insures a onc to one correspondence between the sets of

values of the parameters and the rotations of a rigid body. Other choices of limits are

possible.

When considering the transformation under rotations of the angular momentum

eigenfunctions, a rotation by 2rt about any axis is no longer the unit operation, as the

i 5-1
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eigenfunctions for half-integral quantum numbers are transformed into their negatives.

The transformations of the angular momnentuin cigenfunctions to be considered ame those
of the two-dime:nsional unitary group, rather than the three-dimensional pure rotation group. 4

The familiar language about rotations may be preserved if, proceeding as Bethe, 5

the range for the angle of rotation about a given axis is extended to 0 < 0 < 4nr, and ro-

tations by angles differing by 21r are no longer considered equivalent.

The correspondence between these generalized rotations and the sets of Eulerian

angles can also be insured by an appropriate choice of limits. A convenient, symmetric

choice is, for example

-Ir < a + Y •i

-n < a - y v (5-3b)

-2 , < .< 2n

To every set of parameters in these intervals there corresponds a unitary transformation

or generalized rotation.

The theory of the angular momentum and that of rotations in three-dimensional space
are very closely connected. The eigenfunctions Jim) may be derived as eigenfunctions of
the operators J 2 and J z, and also as basis functions for the irreducible representations for

the three-dimensional rotation group. The relation between the operator R,(O), associated

with a rotation by an angle 0 about an axis defined by the unit vector n, and the operators

n .J of the component of the angular momentum along the axis of rotation is given by 1 - 3

Rn(0) - eiO(n-J) (5-4)

so that, for example

RZ(a) = e iaJz, RY(/f3) = e ioy (5"5)

The rotation operators commute with J 2 Also, the operator associated with a

rotation about a certain axis commutes with the operator of the component of J along that

axis'

Accordingly, the angular momentum eigenfunctions tim) transform into eigenfunctions

of J 2 with the same eigenvalue, j, under all rotations. For rotations about the z-axis, the
eigenvalue m of J z is also preserved, the eigenfunction being only multiplied by a phase

factor
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R,(a) Jim) = Jim) eima (5-6)

However, a rotation about any other axis will change the direction of the axis of

quantization and consequently the eigenvalue, in, of the J component. In general, the

transformed function will be a linear combination of functions jim '), with m ' ranging from

-j to j. For example, the transformation equation for a rotation about the y-axis is

R(Of30) Jim) = X jim') (jminR(0P0)jjm)

(5-7)

= X Jim') d(l)(3)
m

In the general case,

R(af3y) jim) - 1 1jm') (jm'jR(acy)jjm)
m 

(5-8)

-•Jim') DOY) (any)
m m

in

If the rotation is expressed as the product R (a) R,(f0) R (y) and Eqs. (5-6) and

(5-7) are introduced, we can write

R(a/fly) Jim) = Y jm') eima d(i )) e'mY (5-9)
m-

This transformation matrices are irreducible representations of the three-dimensional

rotation group or, more precisely, of the two-dimensional unitary group. 4 Explicit expressions

for the matrix elements in terms of the three Eulerian angles have been given in the literature. 1-3

The definitions used by different authors are slightly Oifferent. The conventions we have

followed are those of Wigner and Edmonds. 2

P•)m (([j _:!" '• J -M)!llj m) I (co j 2j j-m'I j + my ]I '-ý/' 8 r-m+ 2v

-n) 2(cos (tan -) (5-10)

the summation index, v, assumes all integral values for which the arguments of the factorials

are non-negative.

5-3
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The rotation matrices have certain symmetries arising from their unitary character

and the choice of basis functions. They are obtainecd veiy easily huni the symmetry properties

of tile matrices for the component:; of tihe angular momentum.

With the usual choice of phases, the only non-vanishing elements of J z, J x, and J Y,

are of the form

(nlJ ,I Jim) = i

(j,ni ± lIJ Jjm) = [(j 4m)(j 0 m I 1)11/2 (5-11)

(j,m 1± lIJI ljm) W -7 [--(j -;n) (j ± in + 1)1 V2

l'he first symmetry property

(Jmn'IJ lIjin) - (jmlJ,,ljmm ')* (GL x, y, z) (5-12)

simply expresses the IHermitian character of these operators, and is shared by all their

integral powers, (Jt1 )k.

rhe second symmetry property gives the relation between complex conjugation and

a change in sign of the projection quantum numbers (inversion of rows and columns).

(jmilJJi!jn)* F (-l1m) -`+ (j, - mi1lJJj, - m) (5-13)

For the integral powem,, this relation takes the form

(jm'l(J,10)k ljm)* ( 1) m + k (j, -m'l(j )1lj -i) (5-14)

and we also have

(j0m l(ijpkljm)(n)* 1)m' (j, -,n 1(ijJ,)k 1i, - m) (5-15)

For the rotation operators

R (0) - e iOJIL . (jJ)k (5-16)
'k=o0 k.!

the first symmetry relation corresponds now to the unitary character of R/P(0), and the second

takes the same form of Eq. (5-15). In summary, the two independent symmetry relations of

the matrix elements of the rotation operators are
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S(jmi'R1 jjin) (jm R" - 1j ')*
(5-17)

0(inI'lR ) = (- i)"" 'n (j, --m'IRI j, -m)*

In particular, for rotations albout the y-axis, the matrix elements are real, andI
d () (-i) - d(i,(3) (5-18)mm mm

For every value of /3, the symmetry relations connect four elements, as follows

id(! 0(1) dQi) )dMmn'- m d (D) m--m d(J), (P3) ("9
mm : -m,--m'(• • mm,(• -l) -m,-

SThe explicit expressions for some particular values of /3 are of interest

(i! (o) - i(0)m)

S)()(5-20)

(I! (ir) = (-1)iAm a(rn',- i)

m mm

the linear combinations that belong to the different irreducible representations of the cubic

point groups. They are also convenient in problems involving coordinate transformations.

The matrices for rotations R(0(0) are, in general, tedious to compute. Their elements may

be expressed in terms of rotations which involve only rotations about the y-axis by Ir/2,
together with rotations about the z-axis, the latter being diagonal in the usual representation.

I "The relation is2

R(0P0) = R(- .- 00) R(0,- -- , 0) R(f300) R(O r' 0) R(-.- 00) (5-22)

For [3 IL, there is a further symmetry relation, in addition to Etqs. (5-19).

This follows from the last of Eqs. (5-21)
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dP '.. (-I ) ( - , 1 - 'd('), ,-' 2 (5-23)
"I 11 T 2

This implies that, for a given value of j, only the elements in a certain region of

the matrix, such as the shaded region in Fig. 5-2, need he calculated from Eq. (5-10).

FIG. 5-2

Tables of d(1 0 (-M-) up to - 2 are given by Edinonds.2 Since these matrix elements
Mm 2

are necessary for the purposes previously indicated, we have computed a table including

values up to j = 12.5. The results are given in exact form, expressed as square roots of

integers, which are also given as products of prime factors.

In problems involving correlations between cubic and trigonal symmetry, values of

d0 ) (r), where r is the tetrahedral angle, are necessary. These have also been computed
mm

up to j = 12.5. Also, wc have computed values of d.,' (-n-) up to j 7.

Further details on the computations are given immediate preceding the tables.

Relation with the spherical harmonics

The elements of the rotation matrices D (ý) (afly) are functions of a more generalmk

nature than the spherical harmonics. They are in fact the eigenfunctions of the symmetric

rotor (Ref. I, p. 214) The indices m and k are the elgenvalues of the projection of the

angular momentum on the space-fixed z-axis and on the body-fixed symmetry axis,

respectively.

Since they are the elements of a unitary matrix they satisfy the orthonormality

relations

5 M1) k (a/3y)* D '* (a)(flY) i (k,k (5-24)

ýD(0) 0~)
,k (apfy)* D,,_k (af3 y) - (m,m

"(i) are orthogonal functions on the surface of the unit sphere. This
llosfo, the fmk

follows from the fact that they are the elements of the irreducible representation matrices

of the two-dimensional unitary group. The orthogonality relations take the form
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tv
f D (j) (R)*. (R) dR = -h 8(j,j') 8 (m, m ') 8 (k,k. ) (5-25)

mk " 1

where

h f dR n 8"2

The relation between the spherical harmonics and the matrix elements of the rotation

matrices is easily established. In the present case, Eq. (1-4) takes the form

Yi (Oq5 = R(1,Py) Y (0',b (5-26)

Tie matrix elements of the rotation matrices are defined by Eq. (5-9), which is now

R~al~y) Ym (0', %, I (' D(I').

(0,~),(afly) (5-27)

so that

Y~ 0,k)Y- ,Y (0',' D(m (a/9y) (5-28)
m m

In particular, we may consider the rotation of the coordinate axes such that the point

on the unit sphere with original coordinates 0, 0 has in the new reference system the new

Scoordinates q0= 0, 0'- 0. Since the point in question lies on the new z-axis, the first and

second Eulerian angles of the rotation are y " 0 and 13 ý 0. The third angle is arbitrary.

j Since the only spherical harmonic different from zero at 0 "= 0, 0"= 0 is

y 00=r2 t+ I V (5-29)

I only one term on the right-hand side of Eq. (5-28) survives, and we have

Sym0 (o, €>7 (,e)0a4) (5-30)

I %TJ~ m om

13y use of the symmetry, relations we also obtain

I
I where y is an arbitrary angle.
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6. POINT GROUPS

A. SINGLE GROUPS

The symmetry operations of the point groups may be classified into four different

types:

a) Proper rotations about an axis ot symmetry.

b) Inversion through a center of symmetry.

c) Reflectiors' in a symmetry plane.

d) Improper rotations about an alternating axis of symmetry.

The last two types of operations may be considered as the product of the inversion

and a proper rotation.

A reflection is equivalent to a rotation by 180' about an arbitrary axis perpendicular

to the plane of symmetry, followed by the inversion through the intersection point.

An improper rotation by an angle 0 is equivalent to a proper rotation by 0 + rr followed

by an inversion through the orgin.

The inversion commutes with all symmetry operations.

The structure of the point groups fits into a simpler scheme if all the different

operations are classified into the two following types:

a) Proper rotations.

h) Products of the inversion and a proper rotation.

The point groups Cq, D,, T, and C, consist only of proper rotations. The rest are

either isomorphous with one of these or the direct product of a rotation group and the in-

version group.

A comprehensive symmary of the point groups and their operations, with the exception

of the icosahedral, is given in Table 6-1. They are classified into three main groups, according

to the possible valuesof the Eulerian angle 13 of the rotations. The principal symmetry axis

is chosen as z-axis.

Under the headings for each point group are listed the operations. Rotations with

, 0 are designated simply as R,(qk) where ý corresponds to the value of a + y.

6-1
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TAI3LE 6-1

SYMMTETY OPPRATIONS OF' Till' POINT 6ROUI'S

CYCLIC AND RELATED GROUPS: (P "- 0)

n

n OPERATIONS 2n OPERATIONS

Cyclic Groups Direct Product I x Ca Isomorphous with C 2 n

n odd 11 even1 n even n odd

Cn S2 , Cnh S2. Cnh

R Z(0 k) R ,,.(0k) R i' k)

I • R (ý k I • ll,((bk +_ -ý)
n

fI)IIITDRAL AND RI•LATEI) GROUPS: ([l =0,17)

2n OPERATIONS 4n OPERATIONS

Dihedral Groups Isomorphous with D), Direct Product I x Dn Isomorphous with D2.

11 odd n even n even n odd

D_ n Cn_ Dnd Dnh Dnd Dnh

R .(0 k) R ,,('b k) 1k J0• k) R .(05 k)

R(' k, 70 R (•,. R(' k,
I. I•,k) Rz(4k ±.•-)

I R(9kr) I R(IkW00) 1. R(Ok '-,)

CUBIC GROUPS: ([3 = 0, v, -)
'2

a, y 0, it, ± r22

12 OPERATIONS 24 OPERATIONS 48 OPERATIONS

Rotation Rotation Isomorphous Direct Product Direct Product
Group Group with 0 I x'f I x0

T 0 Td T h Oh

(±a ± R(af3y) R(apy) R(ap4y) R(afny) R(af3y)

I • R(a,3y) I • R(apy)

-a+ ! R(a,3y) I . R(a/3 y) R(af3y)
T I.- R(,a•y)

6-2
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Rotations with (3 = n are designated as R( 95, u), whcrc 9, corresponds now to a - V. The
angles ,hk are of the form

SOk ý -2 rr k (6-1)

and k assumes the n possible integral values in the interval

_ n k < n (6-2)
2 -

For those operations with rotation angles 9S = Ok ± M, only one sign need ben.

chosen. If the convention - ?r < 4 < ?r is followed, the minus sign may be chosen for n

even, the plus sign for n odd.

For the cubic groups, the possible values for the angles of the rotations R(afCy)

are specified by the conditions given in the first column.

B. DOUBLE GROUPS

We have already seen that the existence of angular momentum eigenfunctions with

half-integral quantum numbers lead to the consideration of their transformation properties

under the operations of the two-dimensional unitary group, rather than the three-dimensional

pure rotation group.

Similarly, the transformation matrices of those eigenfunctions under the operations

of a point group do not afford a Lcpreseatation of the group. However, these matrices, to-

gether with their negatives, form a (matrix) group with twice as many operations as the

point group. The group of operations isomorphous with that matrix group is called 5 the
"double group" of the point group in question.

To every operation R of the "single" group there correspond two operations of the

double group that may be designated as R and1R. The number of classes and irreducible

representations is not always double. 5-6 We shall give the irreducible representations in
the sections dealing with the individual groups.

All the representations afforded by jjm) eigenfunctions with integral quantum numbers

(the integral representations) have identical matrices for R and R., being also representations

of the single group. For all the representations afforded by jjm) functions with half-integral

quantum numbers (the half-integral representations) the matrices of R and -R are the negative

of each other.
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The definition of the operations R and t, although arbitrary to a certain extent,

may be made in a consistent form by appropriate conventions as to the choice of parameters.

For example, with the choicc of limits for the Eulerian angles given by Eqs. (5-3b)

rr < a + y < Tr

-r < a - y < (6-3)

-2Y7 < /3 227r

we may define the operations R by requiring the angle 13 to be within the limits

- I < 0 < v (6-4)

while the operations 'R will then correspond to values of outside this interval.

Since the rotation matrices satisfy the equation

DWjka(y) = (_1)21 D(i)(a, /3 - 2n, y) (6-5)

this establishes a one to one correspondence between the points in both regions, as well

as the proper relations between representation matrices.

For a rotation by an angle c0 about any arbitrary axis, the trace of the matrices for
j i s

2
X(1./2) 2 cos - cos a + Y (6-6)

sin- 1 -, 2 2
2

Therefore, according to the previous definition the operations R correspond to angles

of rotation - ir < q0 < ri and have non-negative characters for the E1, 2 representation.

The operations of the double point groups may le obtained from those of the single

point .groups given in Table 6-1 by an extension of the limits for the angles. The number

of operations of each type is doubled, but the relations of isomorphism or direct product

are equally valid for the double groups.

For the cyclic, dihedral, and related groups the new operations are most simply

defined by extending the allowed interval for the angles 9Sk to

-2n < 95k !_ 2 vf (6-7)
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with k assuming now the 2n integral values in the interval

-n < k < n (6-8)

Although the operations R and R, may be defined in a consistent way, by assigning

to them different sets of Eulerian angles, according to appropriate conventions, it may be

pointed out that this is not strictly necessary for most practical purposes.

Consider, for example, the fundamental problem of expanding an arbitrary function

If) as a sum of terms each of which belongs to a particular row of an irreducible representation

j of tile symmetry grout

If) X IfY X) (6-9)

Yy,X
The different terms in the expansion are obtained, as indicated in Eqs. (4-17) and (4-18),

by applying the corresponding projection operator

IfyX) i t f) = P tY IfYX) (6-10)"XX

For the double groups we may use the expression for the projection operators (4-20)

in the form

P?(Y)If) = - X[(yXIRIyX)*R + (yXIR, yX)*-R IfyX) (6-11)

where h is the number of operations of the double group. But from the definition of the R and

Soperations we have

(yAIRIyX) (yXI RIyX)

(6-12)
Rlfyk) -- - IfyX)

with the plus signs if y is an integral representation, and the minus signs if it is a half-

integral representation. In every case, however,

(yXlRlyX)*RlfyX) --- (yXIRy)*,IfyX) (6-13)

Accordingly, we may let h represent the number of operations of the single group

and include only the R operations in Eq. (6-11), and the expression for the projection

operators will be identical with that for the single groups.

I
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The result is based only on the one to one ctrrespondence between R and'R
operations and the basic property (6-12), and holds independently of any choice of para-
meters to differentiate between them.

C. IRREDUCIBLE REPRESENTATIONS

The irreducible representations of the point groups are given in Tables 6-3 and 6-4.

In the direct product groups I x G, two representations, r and 17, correspond to
every representation I' of the group G. The subscripts g and u indicate their symmetric or
antisymmetric character, respectively, with respect to the inversion operation. The matrices

for the representations r.-and F• are obtained from the matrices P(R) of G, according to

the scheme

"TA13LE 6-2

IxG R I.R

r F(R) P(R)

17' P(R) - F(R)

The representations for the groups which are isomorphous with a group consisting
only of pure rotations are taken to be the same as for the latter groups. The correspondence
between the operations of two groups is easily established by the equality of the rotational
factor of the operations. For example, the 9Ok angles of the rotational parts of the operations
of Dnh may be written in the forms

-- 2" 2k
2n

(6-14)

k + x-.. (2k + 1)n 2n

As k assumes all integral values within its interval, Eqs. (6-2) or (6-8), the angles take
all the possible values for the corresponding operations of D2 ..
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The present choice of representations is such that these are completely reduced for

the operations of the subgroup C. of rotations about the principal summetry axis. For these

operations the representation matrices are diagonal, with elements of the form e b l. In

this form it is possible to assign to every row of an irreducible representation an index, it,

such that only linear combinations of angular momentum eigenfunctions with eigenvalues m_

S~of the form
m ti= + np 

(6-15)

belong to that particular row. As usual, n is the multiplicity of the axis selected as z-axis,

and p isan integer, positive or negative.

C-1. CYCLIC AND DIHEDRAL GROUPS

In the case of the non-cubic point groups it is possible and convenient to assign

a similar index, y, to the irreducible representations themselves. This index may be taken

as y = p or y - JILI, and both are related to the possible values of J . for the eigenfunctions

that belong to the corresponding representations by Eq. (6-15).

In addition to the physical meaning that can be given to y and I, it is possible to

express the characters and matrix elements of the irreducible representations as explicit

functions of these parameters. This has the further advantage that the characters and

representation matrix elements for the double groups are given by the same expressions as

for the single groups, by simply allowing y and p to assume half-integral values within their

intervals.

In what follows, all the results that shall be given for non-cubic point groups apply

to the ordinary single groups for y and p integral, and to the corresponding double groups

for y and p integral and half-integral.

The correspondence between y and the customary designations for the irreducible

representations of these groups is straightforward, as it may be seen from the tables.

The representations characterized by y = 0 are one-dimensional and have real

characters, 1 1. In particular, the characters for the rotations about the z-axis is + 1.

These representations are usually designated by the letter A.

The representations corresponding to the maximum value of y (y = n/2 for C., Dn,

and direct product groups, y = n for the groups isomorphous with C 2. or D2 n) are also one-

dimensional. The character for the operations involving the rotations by the smallest angle

about the z-axis is - 1. These representations are designated conventionally by the letter B.

6-7
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For other integral valucs, y corresponds to the subindex usually assigited to the

doubly-degenerate E representations. Although the irreducible representations of the

groups Ca, S 2 n, and Cnh are all one-dimensional, the pairs of complex conjugate repre-

sentations are often treated as a two-dimensional representation of type E.

There is one more index required in order to differentiate between the two repre-

sentations of the same type, A or B, which occur in the case of the dihedral groups. The

two representations within each type are conventionally distinguished by their character,

+ 1 or - 1, under the two-fold rotation R(0n0) about the y-axis. The symmetric representations

are designated as A or B 1, the antisymmetric ones as A 2 or 13 2.

All dihedral groups have the representations A, and A 2. The D2. and related groups

posses the pair B1 and B32, but for n odd the single groups D, do not have B-type representa-
tions.

The corresponding double groups always possess a pair of representations of type

B. For the D2n groups these are also representat ions of the single group, B, and B 2, while

in the case of D,(n odd) the pair of B-type representations emerge as half-integral repre-

sentations associated with y = n/2. In the latter case, the characters of these representa-

tions under the two-fold rotation R(OrrO) are + i or - i.

The usual notation for the non-cubic single point groups may be extended to cover

the corresponding double groups with a minimum of changes by the following provisions:

a) The subindex y for the E y two-dimensional representations may be allowed to

assume half-integral values within its interval.

b) In the case of the 0. and related groups the two one-dimensional representations

of type B may be designated as B 1 and B2 irrespective of whether they are integral (n even)

or half-integral (n odd). In the latter case their characters under R(OrVO) are + i and - i,

respecti vely.

The notation followed for the groups Cnh and Dnh forn odd i!- the same as for the
isomorphous groups C 2 n and D2 n, respectively. The usual notation for the single groups

is based on the direct product relations, Cih x Cn or C lh x D., the representations being

labelled by a prime or a double prime to indicate symmetric or antisymmetric character for

the reflection ah. However, the direct product relation does not extend to the double groups

Dnh. Although the direct product notation could be extended to the Cnh double groups, it

becomes unnecessarily complicated because the C lh = C. double group has four irreducible

representations. On the other hand the notation based on the isomorphism with C 2 n or D2 n

6-8
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TABLE 6-3

CYCLIC AND DIIIEDRAL GROUPS: IRREDUCIBLE REPRESENTATIONS

n

Single groups integral -n/2 < k < n/2 - < (b < ?I

Double groups integral and -n < k <n -21r < <21r
half-integral

(n even) S2, R (0k) I". RZ(Ok

IR(kk) (n odd) Cnh n

A 1 0 A 1 1 0
CYOk ye iy95k iY4<0k+ 7n)

eE yO<y<n/2) (O<y<n) Wk .y(k+
-YO(n odd) e2 iyiyk - + e

B (- 1)k n/2 13 1 - n

(n odd) 52n

(n even) Cnh

D_ R _(,bk) R(Ok, ri)

Cnv R z(0 k) I. R(_k, _)1

A1  1 1 0

A2  1 -1 0

(0 <y<n/ 2) L e'iYk Wk )y

even B (-1k -1)k n/2

klI -(. 1 )k n/2___

n odd B21  (-I)k i(-1)k n/2

Bodd B 2  ( 1 )k - ( 1 )k n/2

6-9
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is simpler, easily extended to the double groups, and more in line with that of the other

noln-cubic groups. The correspondence between this and the usual notation for the repre-

sentations ot the single groups is easily established, as follows: for y even, the present

Ey corresponds to Ey/ 2 , while for y odd the complex conjugate of the present E(,.,) cor-

responds to I"2.

C-2. CUBIC GROUPS

The operations of the cubic groups have been specified in Table 6-1 in a rather

general form, by the conditions to be satisfied by the sum a + 13 + y of the Eulerian angles

(referred to the usual cubic set of axes). It may be easily seen that, for example, the con-

dition a + 3 + y = kir, (k integer) is satisfied by the Eulerian angles of twelve non-

equivalent rotations

f 0 a +y=O0,1

/3 ~~ =, a 0, rr

(6-16)

a 0, n y r
2' 2

" T-T y=O,n

The individual operations of the groups T and 0 are listed in Table 6-5. The cor-

responding transformations of the coordinate system are indicated in Fig. 6-1.

The operations of the remaining groups, Td, Th, and Oh, may be obtained from these

without difficulty.

The tables of characters for the cubic groups are given in Table 6-6. They are

given for only half of the operations of the double groups. The Eulerian angles listed

under the class headings have been taken according to the convention of Section 6,

Eqs. (6-3) and (6-4). The number of operations in the classes containing two-fold rotations

R(a vy) are given as fractions as a reminder of the fact that in the double groups the cor-

responding Ir operations do not form new classes.

The irreducible representations of the group 0 in terms of the Eulerian angles are

given in Table 6-4. These are also the representations for the isomorphous group Td.

6-11



The matrices of the represtntarinns of 0 for the operationn of its subgroup T afford

the irreducible representations for T. Our choice is such that conjugate representations in

O have identical matrices for the subgroup T. Thus, for example, the matrices for F , and F2

of 0 give the same matrices for the F representation of T. Similarly, the imatrices of the

representations E 1 / 2 or E5 / 2 of 0 afford the representation E1/ 2 of T.

The representation matrices for the self-conjugate representations, E and G3 / 2, of 0

in the form given afford representations of T which are not in reduced form. The reason for

t'his choice is to avoid the presence of complex coefficients in the expressions for the

symmetry functions. These representation matrices may be brought to reduced form unuer

T by a unitary transformation, Eq. (3-5), by means of the matrices

A(P-) Ila 1t/v17 (6-17)
i /VIT -i/VT )

1 /VT- 0 0 1 OVf"
o -i /T -il/V1

= 0 0 i J(7
o0 -1~ /V7 /V 0/

The representation matrices for the direct product groups Tb and 0 h may be obtained

by the usual rule (Table 6.2).

6-12



I

I .TABLE 6-4

IRRIfIICIBI.P REPRESENTATIONS OF THE GROUP 0

INTEGRAL REPRESENTATIONS (CUBIC AXES)

I
r (a, f, y)

I
I A1l

I A 2  cos 2 (t a t y)

I
10( Cos 2fi -1) F sn2Co2y

I EL 2 2ainfco v sn 2 I
FJ-3 sin2pcos 2 + Cos 2I) sin 2siy

1+ Cos peay)sin 0 ei (1 - cos M)e i(a-y)-

F2 r^2 2 •FI
I

I si6-iyC s13 - i "

Cos A)sin ! 1 (1 + Cos 13)e- +Y)
L22 2

F2  
r A2x rF
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TABLE 6-4 (Continued)

IRREDUCIBLE REPRESENTATIONS OF THE GROUP 0

HALF.INTEGRAL REPRESENTATIONS

r(a, (3, y)

(a+ y) "•i(a - y)
2 cos ".T e sin-9-

E 1/211
-4e ( sin -9- e- T cos9-

E 5 / 2  r IA2 xrE 1/2

Y) 4a~' + -v) ~25  eia- - i2 '4 -_ i y)s 2

i(-L +• •7) i(la+- I ' ) i (e - 1-y) i(la-- Y)-eC 2 s e 2 2 (c 3-2cs 2 ) c 2 2 (_s3 2sc 2 ) c 2 2 cs2

G 3/2 1 .+.y ( - +i -! 3Ye 2.' -'cs 2 e -2 2/ • (s3-2so) e 2- 7- (c-2-• c) e( -°- 2 ' V3-c's

-e 2 2 3 2 2~s 2C 2  2 2 2S

c=cos-6-, s =sina--

2 2
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TABLE 6-5

GR~OUP~ C) tulerian Angles (Cu bic Axes)

SUBGROUP T COSET T'C2

R (y4,a R CyJ'&

B (0,0,() C2 Fit

C2(z) (ifO,O) C 2 '(-x y) (O, Ir, .--- )
2

C 2(y) (0, rr,0) C4(z) 2oo

2

C( (0, ??, IF) C -1 (y) -M00
C3 (,1,) 2 2

C 3 (-1, 1,-i) (0,-L-, 2.L 2 1()O'!-r

C3 (i-,1 (0,--!!,- 11) C '(-xz) 2'-Mo

C301(1,11) (.!. i)Cj(xz) 20 ' 2 '
2 2 2 f

C(3- (1 1 1 -L, r) C4(yz) m i)

C3 (I1 2 2' 2 2 2

C -1(-1, 1, -1) (-..fM, E..!.,O) C2 'E.yz 2', 2't2

3_______ 2 2 C 2,(x ) 2' 2' 2
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TABLE 6-6

CUIARACTFR rARLP7S POR THE CUBIC GROUPS

T E 6 C 4C 4C71

2 2 23
(7r, 0,0U)

(v,/,a) (0,0,0) (0,", 0) (0,÷ + --'T aT+-T'°)
('7, 1, 0)2 2

A 1 1 1

Integral E 1 1 21
1 1T

F 3 -1 0 0

E 2 0 1 1
Half-integral 2 0G 3/ 1 2- 1

2 0

"dE 62C2 SC3  6S4 12

0 E 6 C2 8C 6C 4  12
_______ _______ T 2 C3  2F 2

0.,oo) (+_ , -I , o) (0,. +_1
(y,fO,") (0, 0,0) (0, n, 0) 2 2 (0,±J(L, ±,-)0

(,1, 1• •0) 2 2 n-,

A1  1 1 1 1I

A2  1 1 1 -1 -1

Integral E 2 2 -1 0 0

F 1  3 -1 0 1 -1

F 2  3 -1 0 -1

E 2 0 1 T2 o

Half-integral Es/ 2 0 1 -r2 0

G% 4 0 -1 0 0

Thb I xT
0 h=x 0
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CUBIC GROUP 0 :SYMMETRY' OPERATIONS

E. C2 (z) Z

(01010) 'Ii0,0

X
C (y) IDW

(0,7r ,0) 0 1 (0*17rr) X'7I
y I

C3 (IJ ) 3 (I 1,1 -

/- I X )Ic (-ii 1O)

I By

c7r 7rI(, -I~) 1

2 2 2 y

c 3 
C3  xy
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C4 (Z) - 4: C(z)1~ -

C(X101) (- 00

2 4 y 1/ 1 ~y

S2 7A,

l/2

C4 z 4

c(-H, H,(yz I

2 2 2y X~I

C4 (Y) 4 (Y)

2 x 2 ,'

(0 7r,(06-7r

y rz 
2 ý- y6



I
I

GROUP 0: REDUCTION OF THE REPRESENTATIONS Vi

IRREDUCIBLE REPRESENTATIONS IRREDUCIBLE REPRESENTATIONS

S0 A1

1/2 E1/2
1 F,

3/2 G3/2
2 E F

5/2 E5 / 2  G3 /2

3 A2  F1 F 2

7/2 E1/ 2  E5 / 2  G3 /2
4 A1  E F 1  F 2

9/2 El/2 2G3/2
E 2F 1  F 2

11/2 E1 / 2  E5/2 2G 3 /2

6 AI A2  E FI 2F 2
13/2 El/ 2  2E5 / 2  2G 3 / 2

7 A2  E 2F 1  2F 2

15/2 El/ 2  E5 / 2  3G 3 /2

8 A1  2E, 2F, 2F 2

17/2 2E 1/ 2  E5 / 2  3G 3/ 2

9 A A2  E 3F1  2F 2

19/2 2EI, 2  2E 5 / 2  3G 3/2

10 A1  A2  2E 2FI 3F 2

21/2 El/ 2  2E5/ 2  4G3 / 2
11 A2  2E 3FI 3F 2

23/2 2E 1 / 2  2E 5/ 2  4G 3 /2

12 2A1  A2  2E 3F 1  3F 2

A 25/2 3E1 / 2  2E5/ 2  4G 3/ 2

A 1  A 2  2E 3F 1  3F 2

Sr12 n+ i -nPreg" r J. r2 n+ i=ý2n "tI / 2+Fr
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7. SYMMETRY FUNCTIONS

The transformation properties of the angular momentum eigenfunctions under rotations
have already been considered in Section 5. It may be mentioned that the transformation co-
efficients depend only on the eigenvalues j and m, and they are independent of the kind of
angular momentum, whether orbital or spin, of the number of particles in the system, etc.

This is no longer true when the transformation properties under inversion are con-
sidered. The spin eigenfunctions are invariant under inversion, but the orbital angular
momentum eigenfunctions of a particle transform as the spherical harmonics, that is

I "-) =(- I)y 1 tm) (7-1)

As the angular momentum eigenfunctions in atomic or molecular problems are linear com-
binations of product functions of several particles, each with a certain value of tC, the
product functions transform as

I I timl) I "t2m2) •... I timi)- 1L. ( j _i it i,•mdjt~ 2m2)"... I t•imi).• (7-2)

Accordingly the functions will be symmetric or antisymmetric with respect to the inversion
according as to whether the sum Xtj of the orbital quantum numbers is even or odd. The
even or odd parity of functions may be represented by an index a which can take the values
0 or 1, respectively, and we may write in general

I jjm) - ( - 1)0 I ajm) (7-3)

In what follows we may always assume that the angular momentum eigenfunctions under
consideration have a definite parity, specified by the quantum number o.

We shall now proceed to determine the general expressions for the linear combinations
of angular momentum eigenfunctions that belong to the different irreducible representations

of the point groups. For each representation of dimension d they form sets of d partners, each
characterized by a different value of the index u, that labels the rows of the representation.

In general, the operations of the group transform any of the partners into a linear combination

of all of them as in Eq. (3-10).
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R If yIL') fy10) (ay It R yI ayL') (7-4)

The indices /A,' 'label the rows and columns of the irreducible representation, the indices

ca and y label the representations themselves, and the index f stands for all the remaining

labels or quantum numbers specifying the function and which are not affected by the group

operations, and will be omitted unless necessary.

For the simplest groups, the symmetry functions formed from the Ia j m) eigenfunctions

may be found by inspection but in general the use of the projection operators leads to the

desired results in a simple form.

The expression for the projection operators (Eq. 4-14) to be used is

p(Ya) = d Y(,iyfIiRIayp.)*R (7-5)~I•/ 1i R

As indicated in Section 4, if the original set of functions whose symmetry linear

combinations are to be determined afford a representation (reducible or irreducible) of the

group, all the possible sets of symmetry functions for a given irreducible representation

may be obtained by using only the operators associated with any particular column of the

irreducible representation. In our case, the I a j m) basis functions associated with given

valuesof cr and j, and all the corresponding values of m from -j to j, afford a representation

of the group. Moreover, with our choice of representations, all the symmetry functions

belonging to the p-th row of a representation must be linear combinations of I a j m) functions

with the possible values of.m_ given by Eq. (6-15)

m - it + np (7-6)

These functions are all different from those corresponding to another row #'(since the

difference I' - It is never zero or multiple of n).

Conversely, even when the Jo, jm) functions of the family defined by m = p + _p

are not themselves symmetry functions, they never contain symmetry functions belonging

to a different row p'of the same irreducible representation.

According to Eq. (4-9) the projection operators associated with the column ft of an

irreducible representation give a non-vanishing result only when they operate on functions

that contain symmetry functions belonging to the p-th row.
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If follows that in order to obtain all the symmetry functions that belong to a certain

representation it is sufficient to apply the projection operators associated with any fixed

column i to the I a j in) functions with E !L + _np. When applied to the same IJ j m), they

generate a set of partner functions, each belongihg to the row p" of the corresponding

operator, P(Y .,i~t

For example, in the case of the non-cubic point groups the highest dimension of

the irreducible representations is d = 2, and the values of the indices iL and It' labeling the

rows and columns of the representation Ey are y and -y. The operators to be considered

are

P () P (Y)1
, IY (7-7)

p(Y) P(Y)
Y -Y ,-Y1-

The operators P(Y) and P(Y) give a non-vanishing result only when they operate on

functions which belong to the first row or contain such functions. With our choice of repre-

sentations, the first row functions are characterized by eigenvalues m of the form n = y + np,
while for their second row partners __ = - y -np.

The operator P(Y) generates the first row partner and the operator P(Y) the second
y, -Yy

row partner when operating on the same first row function. All the independent pairs of basis

functions arv obtained by the action of these operators on the Jaj m) basis functions with

n = y + np. The functions obtained are all independent and orthogonal to each other, and

no redundancy problems arise.

In the case of the non-degenerate representations A1, A2' B13, and B 2, the symmetry

functions are of the forms

lajm) ± Iaj,-m)

Sand it is only necessary to operate on the functions with m > 0. The functions with negative

values of m yield symmetry functions differing from the previous ones only by a constant

I factor.

The redundancy and non-orthogonality problems arising for some representationsI of the cubic groups are slightly more complicated. They shall be consider later.

7
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A. NON CUBIC GROUPS

In addition to Eq. (7-5), we shall need the following expressions for the trans-

formation of the I a j m) functions

Rz(kO)Iajm) = Iajm)eiC4J (7-8)

R(0,v) Iajm) = (- 1)i+m aj,-m) eimo4  (7-9)

I 1 a j m) = (-1)11 1l in) (7-10)

We shall also make frequent use of the familiar summation formula

n-1 i- kkXI, e n -n8(k, np) (-1
k=0

where p is an integer, positive or negative, and 8()L,np) is the familiar delta function

1 for X np
8(A,np) 0 (7-12)

0for A, u p

Groups Cn

Since the representations are one-dimensional with characters

X(A)(0 k) - e 4 4 k (7-13)

the effect of the projection operators on the Iaj m) eigenfunctions is

i(mA-) 22r k
P(P) Iajm) I Iaj m) e n = [rjm) 8(m,1+np) (7-14)

11 k

The functions Jaj m) and I j, -m) belong to complex conjugate representations. Although

these are often considered as a two-dimensional representation Ey, (y -Ii), it should

be kept in mind that the pairs of functions are not "partners," since they never transform

into each other under the group operations. These remarks apply also to the S 2. and Cah

groups.
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Groups S 2n (n odd) and Cnh (n even)

Since these are the direct product groups I x Cn,, the effect of the projection operators

on the Ija m) eigenfunctions is as follows

PQ( )Iujm) = acrjm) 8(or,O) 8(m,py+np)

(7-15)
P tu) g jm) = aojir) 8(o,1) 8(mqp+np)

so that the functions with eigenvalues m p + np belong to the representation yj or yu

according as to whether their parity is even or odd, respectively.

Groups S2n (n even) and Cnh (n odd)

These groups are isoinorphous with the corresponding C2n. The symmetry functions

are

P )loaim) lm) + Oa C n(l)e(7-16)

2n k

If the angles 01k are expressed as in Eq. (6-14) and consider that we can also write

i-i 2n na(2k+ 1)
(-2l - e (7-17)

we obtain

i(m-lz-na) 1- 2k i(m-Jt-na) L (2k+l)
P (`0ojm)) - ajI,)) Xe 2 e C2n ujm)8(mI4na + 2np) (7-18)

2n

As indicated previously, for y = 1tji even, the representations designated here as E y correspond

to the representations of the single group Cnh usually designated as E ', 2 , while for y odd,

the complex conjugate of En-y corresponds to the usual E/2 . It may be noticed that for given

integral jrn, if a function of a certain parity belongs to an E*representation, the corresponding

function of opposite parity will belong to an E"representation.

Groups D.

Unlike the groups considered thus far, the dihedral groups contain symmetry operations
involving rotations about axes perpendicular to the principal symmetry axis. The projection

operators are no longer diagonal in m, and when acting on the oij m) eigenfunctions generate

linear combinations of Ja j m) and lo j,- m), as follows;

7-5
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V7 P jj,) - F aj iin) F (--i)+'' j,-m)I I(in,np)

(7-19)

FPA cjA ) -m) F ) -l(mI-1 )' I Ij I(77j,-,In)I iS(i,np)

a j a 11) - 7 111) a(m,y 1 rip)
YY

(7-20)

p(Y) a cj m) (41)~ j + ± 2y' a j, - i) 8(mi,y + n p)
-YY

For n even. the representations B 1 and B2 are integral, and we have

V27-P(Bi) 1ojm)- /I • al im) + (-I))+ , -I- p)
2 2

(7-21)

r p(12)im) lie m) -(-1)'+ m Iaj,-m)I 8(m, -R- + np)

For n odd, the representations 1 and B 2 are half integral, and the functions that

belong to those representations are of the form

\f p 2 1(j m) F V2L I I , j n) + i (-I)'+ nm I a j,- in)! 8(m,-A- + np)

(7-22)

=P= "= ,,) -1a In)1 - i(-1)a+mm J .rj,-m)l 8(m, A- + np)2 c )-m2

It may he noticed that the average value of J . in the non-degenerate states is
always zero.

Groups Cnv

These groups are isomorphous with Dn. The presence of the operations I .R(Okwr)
introduces a factor (-.1) in the transformation coefficients which apply to the corresponding

operations R(OWk,O) of D.. The expressions for the symmetry functions may be obtained from
those for D. if the factor (-l)l+m in the coefficients of o ia,-nm) is replaced by (-l)j+m+O.
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Groups Dnd (n odd) and Dnh (n even)

These groups are the direct products I x Dn. Functions that belong to a given

representation of the subgroup D, belong to the corresponding g or a representation of

these groups, depending on whether they have even or odd parity, respectively.

I Groups Dnd (n even) and Dnh (n odd)

These are isomorphous with the corresponding groups D 2n. Proceeding in a similar

Iform as for the groups S 2n (n even) and Cnh (n odd), the following expressions for the

symmetry functions are obtained

I ,• p(A, 2aijm)_ - flaj m)- (-_1)1m jaj,-m)l 8(m,no + 2np)

P(y) Iajm) = jain) 8(ni,y + na + 2np)Sy, y
I (7-24)

P (Y) I ajin) + .l~m + 2 y Ia j,-,) 8(mf, y ~+no+2np) (-4

and, since the representations B 1 and B2 for these groups are integral

(/7 PB ( ) iT I I ,oire) + (-l)'+ a j,-m)l 8(m,n +na+2np)

(7-25)r2 P0•,2) laim)> - I U/- M) o -(-1)1+ "n a j, -m) I 8(m, in +n + 2np)

J B. CUBIC GROUPS

In the non-cubic groups, if the principal symmetry axis is chosen as the z-axis, the

j only possible values of the Eulerian angle 13 for the operations of the group are 0 and n.

These rotations transform a given Ioaj m) eigenfunction into either I aj m) or I a j,-m),

multiplied by the appropriate phase factor (Eqs. 7-8 and 7-9). In the case of the cubic groups

other values of P3 are present. If the three fourfold axes of symmetry of a cube are selected

as axes, the new possible value of 13 is v/2. If one of the three-fold symmetry axes is chosen

i as z-axis, 13 assumes the values r and n-r, where r is the tetrahedral angle. The I c j m)

S~7-71



functions transform under these operations into linear combinations of I r j m ) functions
with the possible values of in' ranging, in general, from -j to j.

The operators PY) transform the functions into linear combinations with /1'values

of the form __m'= p A+ nItp, i the representations are chosen as previously indicated.

The symmetry functions may be obtained by the use of the projection operators.

With our choice of representations it is relatively easy to obtain explicit expressions for

them. We shall illustrate the procedure for the representations A It F J, EA and G of the

group 0. Our choice of representations is such that the I a j 'm) functions for j' = 0, 1,

1/2, 3/2, respectively, transform according to the representation matrices, so that

(yp/'l R Iyp) = (j 'p 'I R I j '1) =- eiF a d('A')(fl) e'i/y (7-26)

where p and f" assume the 2j" + 1 values from j' to -j ',

The operation of the P(Y) on the functions Iaj in) is

pC~y)Iujm) = X Iajm')(ojm'lP A Ia jm)
/t/1m P /1

d "1 7.7-- - R I R ajm) (yA' R Iy/1)* (7-27)

h R

-.dh I ain iojn' •(j m'I R I j m) (y Ii"' R I y/2)*
h mA R

The coefficients of the various uj im') may now be written, by use of Eqs. (5-9) and (7-26),

in the form

(Uj m'AP(IA) Iujm) d ei(m'-ti')a ei(m-/)Y d(") (/) dP) (j) (7-28)

'A/ a 'F ,y P1 m m

The summations over a and y for every value of p may then be performed separately.

With the sets of Eulerian angles given in Table 6-5 we obtain three types of terms.

Forj8 -0, a+y=Or, M-, - -, and
2' 2'

d(!:) (0) - 8 (p'a') d(D (0) = a(m'm) (7-29)
IL,' m m
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and the corresponding sum is

8(p',v) 8(m,m) I ei(m-L)(a+Y) = 45(,t) 8(mr,m) t(m,jt+4p) (7-30)
a+y

Similarly, for f = if, a - y = O,ir ri,

do') + (-)' (L,-) dP) (TO) "(-1)J+m 8(m -m) (7-31)

8(ft ,-jL) a(Xn',-in) e ' 4 S(IL',-ft) 3(m,-m) S(m,p +4
4 p) (7-32)

at-Y

For we have ,,y r 0,7 , but no simple expression for the d ,

so we will leave the sum in the form

dt d .m('- e tL ) =16d(J't t,(+)d (j r8(m,Ai+4p,) 8(m,t4+4p) (7-33)
M (Y. I /L 1 •J m"m".'M ;

In general, we may write the matrix elements of the projection operators as a sum

of three terms

(Y)
(ar j m" P , Ia j in) = 6(m .1,4 4p') ,9(m,'j + 4p)

X -•- c(O) 8(m m) +(Yy) (-1) +'(',-m)+c(-T-)d(')(', (7-34)
24 -c)() mm+

For the representations considered, the coefficients c(O), c(rr), and c(fT/2) are, as we have

seen

c(o) = 801.1)

e:(.) = 8_~'+ ([L.-0 (7-35)

I c(t-) = 4d(i,•)
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TABLE 7-1

COEFFICIENTS IN THE EXPRESSION OP THE PROJECTION

OPERATORS. GROUP 0. (CUBIC AXES)

P j f" ( c(0) c(n) c(-!-) 1" p ) c(0) c(ff) c(tr/2)
2

At 0 0 1 1 4 ( 1/2 1/2 1 0 2,T2

A2  2 2 1 1 -4 (-1/2 1/2 0 -I -2,r2

0 0 1 1 -2 1 1/2 -1/2 0 1 2T2

0 0 0 2,f - /2-1/2 -1/2 1 0 2,02

E 0 2 0 0 2,3 E5 5/2 5/2 1 0 -2,
E 2 1 1 2 -5/ 2  5/2 0 -1 2T2

1 1 1 0 2 5/2 -5/2 0 1 -2r2

F 10 1 0 0 -2, Er2 2  -5/2 -5/2 1 0 -202

1-1 1 0 1 2 3/2 3/2 1 0

1 0 0 0 22 /2 1/2 3/2 0 o --0

F 1  0 0 1 -1 0 / -1/2 3/2 0 0 r6

'-1 0 0 0 - 2 /T2 -3/2 3/2 0 -1

1 -1 0 1 2 3/2 1/2 0 0 T6
F1! 0 -1 0 0 - 22- G32 /2 1/2 1 0 --F2

-1 0 2 -1/2 1/2 0 0 -T2

1 0 -2 -3/2 1/2 0 0 1 6

F2 2 -1 0 0 2T/2" 3/2 -1/2 0 0 T6

F2  2 2 1 -1 0 1-3/2 -1/2 0 0

1 2 0 0 2F2 3/2 -3/2 0 1 FT

-1 1 0 1 -2 1/2 -3/2 0 0 F6

F 2  2 1 0 0 2T2- G 31 2 -I/ 2  -3/2 0 0 6

1 1 1 0 -2 -3/2 -3/2 1 0
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These coefficients may be obtained for the remaining representations in a similar

form. Table 7-1 pives their values for all the operators for the group 0.

The simplest linear combinations of j m) functions transforming according to the

different irreducible representations are

Al 100) •:0

A2 1132) - 13, -2)./\"2  =2

E [120),1122) 12,-2)l/vr- "] =1 0,2

iF I 111), 110), 1I, - 1)] 1.= ,0, - 1

F 2  [12, -1), 1122)-12, -2) 1/ V ", - 12, 1)1 14 - 1,2,1

E , [1 1),I I- I-) I -1 1
Es ....- NT - V1 - 2 -52_

T 2 ' 2 2
C', tI±/2 ~ ±) 2 ~ ,-- , 2) 2 2'2 2' 2

(7-36)
Trigonal Axes

In certain problems involving correlations between results for cubic symmetry and

those obtained when some lower type of symmetry is present it is convenient to refer the

I j m) funtions to a system of axis other than the usual cubic axis. The symmetry functions

referred to the cubic axes may be transformed by the methods of Section 5, but the linear

combinations thus obtained are in general more complicated than the original ones. It is

often preferable to set up the problem from the start in the desired set of axis and obtain

cubic symmetry functions, which are the simplest in the new reference system, so that the

correlation with the lower symmetry functions may also be facilitated.

The Eulerian angles for the operations of the cubic groups may be easily determined

for the lower symmetry reference system, and the expressions for the projection operators

and the symmetry functions are obtained as in the previous case.

flA very frequent type of lower symmetry is that of trigonal symmetry. We may con-

veniently choose the trigonal set of axes along the following directions of the elementary

cube

7-11
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z -(,2 2" - , 2 y (I,0, i)

The relative position of the cubic and trigonal sets of axes is illustrated in Fig. 7-1.

zX I

Y Y

4 2 3

TRIGONAL AXES

FIG. 7 -I

The Euierian angles corresponding to the operations of the octahedral group 0
referred to the trigonal axes system are given in Table 7-2. The operations are designated
by the same symbols used for the cubic set of axes. The possible sets of angles may be
summarized as follows

l = 0 a+y = 0, 21r/3, - 21r/3

/3 =. V a-y = 0,2rr/3, - 2-/3

ta = 0, 2n/3, - 2 f/3 (7-37)

= - - , 2v/3,-2n/3
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TABLE 7-2

I GROUP 0., Eulerian Angles (Trigonal Axes)

I ~~SUBGROUP T (y3a .~ COSE1 T-5 (4~a

I ~E (0,0,0) C'(-xz) (,70

3 3 4(-3--)

IC 2(y) (ur, 0') Cý(xz) (7, r- r, 0)

Cl(,1)(2n 02r-, 00) C;(-xy) 2n. .4. 17,0)

01(11) 7- -i-

r, T C 1(Yz)' (217-

IC- 1 (- 1,-1, 1) (.-, r, 2)1 C 4 (zY) (jZ 2

I 7-13



The angle r = 109 028' is the tetrahedral angle and

cos r =- 1/3, sin r ý 2 T/2/3 (7-38)

The operations of the subgroup T are those with (i 0,r, while for the coset T.C'2
we have 3 = r r ir.

The irreducible representation matrices for A l F 1 , Ey, and G,/ in terms of the

Eulerian angles are the same as for the case of cubic set of axes, and they have been given

in Table 6-4. Also, the matrices for A2, F 2 , and E,/ are chosen to be the same as for the

corresponding conjugate representations A 1, F 1, and E!/ for the operations of the subgroup

T, and the negatives for the operations of the coset T.C". However, the matrices for the

irreducible representation E are now chosen as

(3 cos P - 1) e i (a+y) 0

2 (7-39)

iL (3 cos f - 1) e-i(a+y)0 2

for the operaticns of the subgroup T, (P /1 0,r), and

- (3 cos /3 + 1) e- i(a-y) 0

for the operations of the coset T.Cý , (/3 Pi, r-n).

The matrix elements of the projection operators may be written as a sum of four terms

(jm' P(Y ljm -3d" 8(mo+3p) S( m' P'+3pl)

x* c(0) 8(mrem) + c(Ir) (-.1)1+n,' a(m -M) (7-41)

* c+(r) (- 1)m-1 d 0m(r) i c-(r) (-1)-t dm 0 (r) I

The representations A 1, EY, F 1 , and Gt/ have been chosen so that the 1o j'm) functions

for j'= 0, 1/2, 1, and 3/2, respectively, transform according to the corresponding matrices, and

the coefficients c(0), c(7), c+(7), and c-(r) are given by
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j c(0) = 8 ([1" , )

C = (-1)i "+A 8 (p' -. )

c4 (r) 3 d(J (r)
"it f-

c-(r) = 3 (-1)'i - d (r)
p , -I

For the representations AD E5/2, and F2, the coefficients c(rr) and c-Ct) have opposite sign

from those for A1 , E1/2, and F1, as previously indicated. The numerical values of the

coefficients for all the representations are given in Table 7-3.

The simplest linear combinations of rjm) functions transforming according to the

matrices of the irreducible representations chosen are

A1  100) 0

A 2  ' v 33) + -%/5130) -v'ý 13,-3) O/3 0

E HIv7 1 21) + 12,-2)I/Vj, 1 122) -vr' 12,-1)I/ 1 1 1, -1

SFt 1 [111), 110), I1,1-I)] IL 1,0,-1

F 2  1-121)+ V7 12,-2)1/VNT, (20), 1-V2 22)- 2,- 1) /v/• l= 1,0,-i

1 q 1 1 1

Y T T, T'-_'" '2
G3/ 2  -I 

1

I (7-43)

GROUP T

As indicated previously, the matrices of the irreducible representations of the group

I 0, with the exception of those for E and G3 /2, have been chosen so that they are also
irreducible under the subgroup T. Accordingly, the symmetry functions obtained for the

group 0 are also symmetry functions under T, with the correlation

I
I 7-15
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TABLE 7-3

COEFFICIENTS IN TIHE I3XPRESS(ON OF THE PROJECTION

OPERATORS. GROUP 0 (T'rigonal axes)

r A it c(0) c(n) c+(r) c-(r) i iL L c(O) C(ff) c+(r) C-(0

Al 0 0 1 1 3 3 1/2 1/2 1 0 vf

A2  0 0 1 -1 3 -3 l/ 2 1-/ 2  1/2 0 -1 -v-
E 1 1 1 0 -3 0 EI /2 -1/2 0 1 r6 A

E 1 1 0 1 0 -3 -/2 1/2 -1/2 1 0 V3 V/6

E 1 -1 0 1 0 -3 E 1/2 1/2 1 0 vf- -- ,(6

-1 -1 o 0 -3 0 -t/2 t/2 0 1 - /v- -/3

I1 1 1 0 1 2 E 1/2 -1/2 0 -1 /6 V'

Fj 0 1 0 0 -2 2 E5/2 -1/2 -1/2 +1 0 T -,/6

-1 0 0 1 2 1 3/2 3/2 1 0 V/iT 3 V-3

1 0 0 0 2 -2 1/2 3/2 0 0 -r2 2

F 0 0 1 -1 -1 1 G3/2 -1/2 3/2 0 0 2 V2

-1 0 0 0 -2 2 -3/2 3/2 0 -I -vý-/3 0iT/

1 -1 0 1 2 1 3/2 1/2 0 0 v -2

F 0 -1 0 0 2 -2 1/2 1/2 1 0 -VT 0

-1 -1 1 0 1 2 G3/2 -1/2 1/2 0 1 0

1 1 1 0 1 -2 -3/2 1/2 0 0 2

F 0 1 0 0 -2 -2 3/2 -1/2 0 0 2 T2
-1 1 0 -1 2 -1 1/2 -1/2 0 -1 0 - r3

1 0 0 2 2 -1/2 -1/2 1 0 -T3 0

F2 0 0 1 1 -1 -1 -3/2 -1/2 0 0 - T2 2

-1 0 0 0 -2 -2 3/2 -3/2 0 i f813 -,/3

-1 0 -1 2 -1 1/2 -3/2 0 0 2 2

F2 0 -1 0 0 2 2 G3/2 -1/2 -3/2 0 0 T -2

-1 -1 1 0 1 -2 -3/2 -3/2 1 0 4V
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Group 0 Group T

FI) F 2  A F

E 1/2' E5/ 2  T--" I /2

The self-conjugate representations E and G 3 / 2 of the group 0 are reducible under T.

The reduction of the corresponding matrices chosen for the group 0 may be accomplished

by a unitary transformation

"T A-' 170 A (7-44)

where the matrix A is given by Eq. (6-17) or (6-18) for the representations E or G 3 /2, re-

spectively.

The corresponding symmetry functions are obtained from those for the group 0 by the

transformation

Tr =oA (7-45)

The simplest linear combinations of Jim) eigenfunctions obtained for these represen-

tations are

E = \2• [ 120)+i122)+i 12,-2)]

(7-46)
Eb = • 2V 120) - i 122) - i 12, -2)]

' L 3-9 - L) +i1-
G, r2 2 2 2

L 3¶, -)+I -L )
VF2 2 2 2 2(7-47)

I +
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The symmetry functions for the irreducible representations of the group Td may be

deduced from those of the group 0 by simple considerations.

If the rjm) eigenfunctions have even parity, they transform under the operations of Td

in the same way as under the operations of 0. Since we have chosen the same matrix repre-

sentations for both groups, we also obtain the same linear combinations of Jin) eigenfunctions.

If the Jim) eigenfunctions have odd parity it is sufficient to notice that they transform

under the operations of Td in the same form as the products IA2) Jim) transform under the
corresponding operations of the group 0. Consequently, the coefficients of the Jjm) eigen-

functions of odd parity in the symmetry functions which belong to a given irreducible repre-

sentation of Td are the same as for the corresponding Jrn) functions which belong to the

conjugate representation of the group 0. For the self-conjugate representations, E and G3/2,

the preceding argument requires that the partner functions be taken in different order and

with different phases from those for the group 0 or even parity functions. If the symmetry

functions are designated by the index pi that labels the row of the irreducible representation

of 0 to which the function It) belongs, the partners have to be chosen according to the

following scheme

0 Group

Td, even parity

E 10), 12) 12), -10)

G3/ 2 13/2), 11/2), 1-1/2), 1-3/2) -1-1/2), I-3/2), ! 2), -11/2)

This result will appear evident later on, when the coupling coefficients for the point groups
are considered.

In different words, it may be said that the E or G3 / 2 symmetry functions IJul), Ip 2), ....*

if their parity is odd, form basis for a representation of Td which is equivalent to the one they

afford for the group 0, but not identical. In order to obtain a set which transforms according

to the latter, they have to be subjected to an appropriate unitary transformation, which for our

choice of representations leads to the result quoted.
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I GROUPS T" %,I) Oh

These arct direct product groups I x T and 0 x 1'. Functions that belong to a given

irreducible rcpresentation of T (or 0) belong to the corresponding g or u representations of

Th (or Oh), depending on whether they have evcn or odd parity, respectively.
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8. COUPLING COEFFICIENTS

A. SPHERICAL BASIS

Let us consider two angular momentum operators, J , and J2 , with eigenfunctions

ij m 1) and 1i2m2). The subscripts 1 and 2 refer to two independent spaces (two particles

or systems, orbital and spin coordinates of a particle or system, etc.) and therefore every

component of one operatc.- commutes with every component of the other.

The sum

J1 + J 2 =J (8-)

is also an angular momentum operator and its components

]ha + J2a = ]a (a = x,y, or z) (8-2)

satisfy the usual commutation rules.

J x J = iJ (8-3)

It is possible therefore to find eigenfunctions jim) satisfying the eigenvalue equations

j 2 Ijm) _ ira) j(j + 1)
(8-4)

J2Ijm) -Iim)m

The (2j, + 1) (2j2 + 1) functions of the type

j1im 1 ) 1j2m2) " Ii tInlj 2m2) (8-5)

form the basis of the direct product representation (or uncoupled representation). They

are eigenfunctions of the z-component of the total angular momentum, with eigenvalues

m = mI + m2

(J0 + J.)t 1Jmd)Ii2m2) = ljl ml)lj2m2) (ml + m2) (8-6)

but are not, in general, eigenfunctions of the total J 2. The product functions may be

classified according to the values of m - m, + m2. There is one function, 1j111)1J2j2),

8-1



for in ý j + j2; two functions, ljtjl)lj 212 - 1) and Uj1j - l)lj~j2 ) for m = it + 12 -1;....

2j2 + 1 or 2j, + 1 for m = 1lt - j2 1; .... , and finally one for m = - (j, + j 2). By simple con-

siderations which we shall not go into, it may be proved that the possible eigenvalues

i of Eq. (8-4) are

+t + j21 Jt + J2 1., it - j 21

The eigenfunctions ljm) are linear combinations of the above product functions

with m 1 i112 - m

jim) ljlmt) [j2 rn2)(jlmlj 2m2ljln) (8-7)

The summation runs only over the possible values of one of the indices mI or in2 , since

their sum is fixed.

The coefficients (j1mJ 2m 2ljm) are the so-called vector-coupling, Clebsch-Gordan,

or Wigner's coefficients. Since the basis functions in both coupled and uncoupled schemes

are assumed orthonormal, the matrices of these coefficients for a given mn are unitary.

Moreover, the phase-factors are usually chosen so that the transformation coefficients are

real, and the matrices are orthogonal. The orthogonality relations are

m (j1mtj 2m2ljm) ( ijmlj 2m2lj 'i) 0(j,j ')
m• (8-8)

• jlmlj2m2ljmn) ( jlm'lj2m2' lim) =(m,,m')

where it is understood that in' + m= - in.

Recursion Relations

There is an important recursion formula wlich connects three coupling coefficients

with the same j1,j 2' and j3, and adjacent values of the m's. It may be obtained by applying

the m-lowering operator

J- = (J 3. - iJ 3y) = (J01 + J 2 -) -i(Jly + J 2 y) (8-9)

to both sides of Eq. (8-7) followed by premultiplication by (j 1mtl(j 2m21. After relabeling

m3 the result may be written as

8.2
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''3 - M3) (3 + 'n3 + ÷" 1it• ?Jm j21i 3M3

1/2

I(jl-m1 )(ji+m +l)li/2(j m . I i 2 n2mIj 3 m3 +1)+l(j 2 -m 2 )(j2+m 2 + 1)l2 (j1 mlj 2m2+llj 3m3 +1)

A similar expression may be obtained by use of the m-raising operator J+

1(13 + m3)(j 3 - m3 + 1)11/2(j 1m1j 2m21j 3m 3) =

(8-11)
1/21,/2 .

1(jI+m 1)(j 1 -mI+l) 1V2(Jm 1 -1j 2m 21j3m 3- 1)+l(J 2 +m,)(J 2-. m+1)l (1lmlj 2m2 .- 11j 3m3-1)

If the coupling coefficients for given il, j2, j3 are written as the elements of a matrix

with columns labelled by the values of m i, and the rows by those of m 2' the recursion

relations connect those elements whose relative positions are indicated below

.. m, + I mI .. .

m 2 + 1 (m1 ,m2 + 1)

m2 (m,+ 1,m 2 ) (m 1,m 2)

in 2  (mIlm 2 ) (ml - Im 2 )

m2 -1 (ml, m2 -1)

8-3
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The recursionr formulae together with the orthonormality conditions suffice to
determine all the coupling coefficients for given J IJ 2,J 3' except from a common arbitrary

phase factor.

Thus, for example for mi j I Eq. (8-10) becomes a one-term recursion formula,
so that the ratios of the coupling coefficients for in = J I to one of them may be determined.
This particular element may be obtained by the normalization condition. The phase factor
is chosen to be +1, and all these elements will be positive. Similarly, for m 2 - - J 2, Eq.
(8-11) also becomes a one-term recursion formula and all the elements in the last row of
the matrices in the previous scheme may be obtained. Also, they are all positive. The rest
of the elements may then be obtained from thoreof the first column and the last row by

using either of the recursion relations.

General Expression

The general expression for the coupling coefficients given by Wignerl is the
following:

(j m 1j 2m2IJ 3m3) -•8(m1 + m2,m3)(2j 3 + 1) 1/2

x t-(-}+J2+J3)1 (J -J 2 +j3)!(j l+J2-J3)1(j3+m3)!(J3-m3)! 11/2 (8-12)j (i + J 2+ J3 + 1)!(j 1 + m )!(j i-ln l)!(j 2 +m2)l(J2- m2)!

X Y (-I)j2+ 2+ (j 1- mI+ v)!(j2+j 3 + r-v)!
v vI(-j ,+j 2+ J3-v)!(J 3 + m3 - v)!(-J 2 + J I- m, + )

The summation index v assumes all integral values that make the arguments of the
factorials non-negative.

The formula is simpler for some particular values of the m's. A few particular
cases are of interest, and we shall express them in terms of binomial coefficients.

Forml m2 =1m3  0, if jr+j 2 +3 =odd,

(.jl0j2 01j 3 0) - 0 (8-13)
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I
j if jl+j 2 +j3 = 2g - even,

2j3 + 1 1/2 (1 (gj 3)-4
() 0j201130) g j 1+j 2 +j3+.42l )( 2j I 1/2

K (2j~ I g-2

It should be noticed that the last factor is symmetric in j t, 2,j 3. In actual calculations it

is advantageous to denote the smallest j i by j, and the largest by J3 in Eq. (8-14).

Form =i j ,

1/2 i( 2j~ (Ij3) j1 + j1 2+ 1/2

2j3 + 1 1kl 12'3 + 1 3m(15
(i1i j1 2m 21 i3m3) (j -j32+j (815

\ 13+ml

Form 2 -- - .2/ 2J2 )• J-2+J3) /2

(j Im 1ij2,-j21j 3m 3) 1j 3 + 13+ 212 +i3 K 1  m1(6
I + i 2 J3 1+mJ ) i (

Form 3 m

L2J3 J1. 2 j

(it1mtJim2 3j3J) = (-1)jl til + 2j 3 +1 1.(-17

Also, for j3= i 1 + j 2 , (m3 >,.)

3+ m 1/2

0 Im 1i 2m 21 1i 1+j2 m 3) L \1 i3-M

j I j 2 j 3 1 ( 2 j ,
I
I 8-5
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The 3.j Symbols

There are several different notations in use for the vector-coupling coefficients.

A summary is given by Edmonds.2 In addition, "synmetrized" coefficients have been

introduced. The most widely accepted are the 3-j symbols introduced by Wigner. These

are defined as

(i J J2 N = (-i)' j-2-m3

1 m 2 in3) (2j 3 + 1)1/2 (Jlmlj2m2lJ3,-m3)

with m, +m2+m3 -0.

The most obvious advantage is that the existing symmetry relations take the

simplest form in terms of the 3-j symbols.

The symmetry relations between 3-j symbols with the same values of j Ii 2, and

J3 may be stated as follows:

An even permutation of the columns leaves their value unchanged, an odd permutation

introduces the factor (-1)It + i2+ i3

A change in sign of all the mi's introduces the factor (- 1,+ 2+ 13.

They may be expressed as follows:

( 2 J32 = (-1)+j2+j3 ri2 it i 3  2 i3 i2 l(1 n2 m/ ~ m2 ml m3 , \ mm/

and (8-20)

(it i2 j i 1 ( + )hl + 2+j33 i 2 13)

m 1 m 2M) I- 1_-m2 -m3

If th~e parameters are all different, these relations connect twelve coefficients.

The orthogonality relations (Eq. 8-8) are slightly modified if expressed in terms

of 3-j coefficients
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X I i 2
1 ) 'ý(j 3

m1  \ n m 2  n 3/ 1 112 Tfl3  (2j 3 +-1)

(8-21)

3) (2J3 + 1) = 8(m 1,m )
'3 1z 2 m3 1 2",3)

I1
where i1 +m2+ m+II3  i mi+ mi +m 3 i 0

Calculation of 3-j Coefficients

The expression for the 3-j coefficients may be written in the following form

-- 8(mM1 +m 2 +m 3,0) ((j1+m 1 )!(j l-m 1 )!(j 2+m2)l(j 2-m 2 )!(j 3+m3)i(j 3-M 3)! 1/2

n I m2 i 3) (-jl+j2+j3)!(j 1-J 2+j 3)!(j 1.+j 2 - j 3 )!(j l+j 2+j3+1)!

(8-22)

x V+.( 1 1vi-12-'3 +Ji2 -J J - 2 I -i l+J2+j

V VJ 1) -m 1 2 +m 2v

The sum is taken over all integral values of v which make the arguments of the

facLorials non-negative. The same is true for the possible values of J 1,J2,j 31 which should

satisfy the triangular condition.

The factor in front of the summation is symmetric in the subindices 1, 2, and 3, so

that the summations themselves have the same symmetry properties as the 3-j coefficients.

Also they are sums of products of binomial coefficients and therefore integral numbers,

and satisfy recursion relations much simpler than those for the coupling coefficients.

These are very useful for numerical calculations of the coupling coefficients.it Jr 2  J3I

"The summations may be denoted by X i . The recursion relations that

correspond to Eqs. (8-10) and (8-11) are Im1 m 2 m31

8-7
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1 l 2  3 1i 2 13 I 2 13
(J 3 "m3) i + (jI + m1 + 1) + - +(j 2 +in2+1) I 10 (8-23)

m1 m2 ml3  m 1+1 m2 I13-1 til fl 2 +1 m3 -1

i 1 j2  j i2 j3  2 2jI j i 3 0 (-4(03-m3) I + (IJ-nm + 1) -(j 2 -n2tl) I -0 (a-24)
In• 2,i n • 2IIM 1- 1 112 11.3 I1 In1 11`2- 1 n)3 +l

Another very useful recursion formula relates the sigmas with those for adjacent values

of the j's and takes the simple form

il j2 jj i- 1/2 j2 -1/2 j3  jl-1/2 j2 -1/2 13
JJ = Y-X (8-25)

Im1 m2 m 3  m 1-1/2 m2 +1/2 in3  Im1+1/2 m 2 -1/2 m 3

Thus, for example, the X-matrices for

Jt 1'j2 =2,j 3 =3 and jl 3/2,j 2 =5/2,j 3 =3

are

In1
m2 m2 3/2 1/2 -1/2 -3/2

1 0 - 1 5/2 0 - 1 2 - 1

2 1 -2 1 3/ 1 7

1 -4 8 1/2 -4 2 8 -6

0 6 -12 6 -1/2 6 -8 -2 4

-1 -4 -3/2 -4 0 -2 -1

-2 -2 1 -5/2 1 -2 1 0

The second may be calculated from the first by simply taking the difference between two

elements, whose relative positions are indicated in the scheme.
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The expressions for the sigmas for the particular valuesrn, = jI and m2  j2 are

of interest since all the others in a given matrix may be obtained from them by means of the

recursion relations (8-23,24).

For m• IJ

Y j, i2 i~ (_ 1 )j1i2_r3 (ii. 2+3 (8-26)IIj 111 n'fl331 \ -r2 /M

and for m2 = -J2

1 2 13 1 (l1 -j2 m3 (jtI -j2 +i3 (8-27)1-,i 2m 31 j1-ml

Coupling Rules for the Rotation Matrices

The expression for the coupling of angular momentum eigenfunctions thus far considered

is

Ij3m 3)- I li lm j2m2) (jtmlj 2m 2lj 3 m3) (8-28)

where m 3 = m, * m2 and the ji's satisfy the triangular condition j 1 + J2- J3 2! ll -j21. The

inverse relation is

Him 1) ij2m2) 1i 3n'3) (j0m1J 2m 2 1J3m3) (8-29)
)3

The coefficients may be written as either ()Im lj 2 m2 lj 3m3 ) or (13m3 i 1m1j 2m2 ) in virtue of

the orthogonal character of the transformation.

It should be remembered at this point that lji ml) and 1j2m2) are functions in two in-

dependent spaces while Ij3m 3 ) is a function in t~he product space. Thus, for example, if

I ml) = yjnj1 (0t,' 1)

S2m 2) = y2 (0 2 ,tk 2 )

8-9



then 1J3m 3) is a function of 01, 011 02, and 02, but not a spherical harmonic, although it

transforms under rotations in the same way.

The coupling expressions for spherical harmonics with the same argument may be

obtained from those for the matrix elements of the rotation matrices. If the rotation operator

R(ajpy) is applied to both sides of Eq. (8-28), we obtain according to Eq. (5-9)

1( 3 3) (,,gy)
, h[3m') Dm 3m3
3 (8-30)

I im J2 m2 ) DmIm (afiy)D m (af 0y) (jIm1j 2m21j 3m 3)
mImIm 2  11 2 m2

If we premultiply scalarly by a particular (13m ' only one term on the left hand side

remains, while on the right hand side the only non-vanishing terms are those for which

mI+ m'= m', and we obtain

(j 1 )0 ( 2 )D(13) (ay)- (mj 2 rn'j 3 n)(jim I 2m 2 j3 m3 ) mt (a(aY) Dm (y)mL m3  Inm3 II 2

(8-31)

Similarly, from Eq. (8-29) the inverse relation may be derived

D (i1 (py)D02) (00 , .jm'~21jm)j ( ag)

•m1 ml (Jl) (ai3y)_m~m2( )= j lmlJ2m2IJ3m3)Dm(may

(8-32)

where, as indicated, m3 =mr +n 2 and m=m+m+ .

It is more convenient to use in place of Eq. (8-31) another expression involving only

one summation. This may be obtained from Eq (8,30) on premultiplication by a particular

product function (j Im1 (j2 nm•I and taking into account the orthonormal properties of these

basis functions. One obtains

nD 03) = . (Jjn ) 0 2)

(1mIj 2m; j 3m )Dn m 3 (at3y) 0= m Ijl 2M 21 f3m3)D l(apy)D (aUPy)

(8-33)

The coupling rules for spherical harmonics with the same argument may now be ob-

tained by setting m0 = m m= 0 in Eqs. (8-32) and (8-33), and making use of the relation

between the D (ago() and the YVm (0,0j) given by Eq. (5-30). The results are
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y-, 3
3  4) 1r F4(2 t3 + 1) Y2 (.~ i~ vlr,. r2(1-t "I (t1m •,2't y t") (0,0h)

(Cto ltl)( - 1 2... j~ 2 ! 2 1 1 fý 3 m ,P 3) +' *o 0 ",P(2~ 1 + 1) (2 t4-1) m ~

Sand (8-34)

and

y m (('4 )Y ,[ 2( 0 '4 )) 2  , ±1 ) (2 t 2 + 1 1 3

4 "•'1 4 '(22- .• (1) 'fi0t20 1 t 30)({im' It 2m 2 1i,3 m 3 ) YT 3 (0,9)

(8-35)

Matrix Ellements o/ Sptherical Harmonics

From these coupling relations one may now deduce the expressions for the integral of the
product of three rotation matrices or three spherical harmonics. If Eq. (8-32) is premultiplied by

particular D(J0)* and integrated over the range of the three Eulerian angles we obtain, by

considering the orthogonality properties

f D3)* D(J,2) D(Jo dRSm3'm, m2'm2 mn•.;•

"(8-36)

(jD02Dm3 -1m2 02 In I2 (2j2 + 1) (jiIJ 2 m2 1 3mI)(jm2J2 rn21 j 3m 3)

Similarly, the integral of the product of three spherical harmonics is

m 2n m

f sin OdO f dA Ym 3 (0,e0)* yV2 (0,0)) Yt 1 (0,0)
0 0 3 2 1

I M3 tm2 I I I1r(21 +21)(2 t2 + 1) V 2 In m (8-3 7)

t Yi3  IYin2  y l 1 4 rr( (2 t3/2() 1 ( 10 t2 01 't3O)( t IMI 't'2 m21 t~3 i3)

This may be written in terms of the 3-j symbols,

(ym 3 IYT 2 1 y~1l) 2 (ý1)in t2 iI(~ 2 l(~u I t2 t )(-3 8)
t3 t2 t*1 L 0~ M 1 mi -in3

8-11
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This expression is very important for the determination of the matrix elements of many

operators of interest in physical problems. For example, the crystal field potential acting on

one electron may be expanded as a series of spherical harmonics. The matrix elements of

the potential between electronic states with definite angular momentum may be expressed

in terms of the 3-j coefficients. The matrix elements for other sets of basis functions, such

as the symmetry functions corresponding to the actual symmetry point group of the crystal,

may then be obtained by the appropriate transformation. The transformations between the two

sets of basis functions.have been considered already in Section 7.

Since the 3-j coefficients are necessary for this, as well as for other purposes, we

have written programs for their calculation with a 650 IBM electronic computer.

Two programs are available. One is especially adequate for the computation of tables

of 3-j coefficients. In this program we have made use of the recursion formulae for the

sigmas of Eqs. (8-23, 24) and this contributes considerably to its speed.

Another program has been written as a subroutine to be used in computations of a

wider scope where values of 3-j coefficients may be required in the course of the calculations.

All the values are computed in exact form, and given in terms of products of prime

numbers or, alternately, as ratios of integers. Further details of the calculations are given

immediately preceeding the tables.

B. MORE GENERAL TREATMENT OF COUPLING COEFFICIENTS

When considering the coupling of angular momenta, the (j1m1 j 2m2Ujm) have been de-

fined simply as the coefficients in those linear combinations of product functions

lim) - '-j lma) jj 2 m2) (j 1m 1j 2m 21jm) (8-39)
tnI

which are also eigenfunctions of the total j 2 and J.. In group-theoretical language, the

coupling coefficients are the elements of the matrix that reduces the direct product of the

irreducible representations j . and F.2 of the two-dimensional unitary group into its

irreducible components, r "

We shall now consider this problem more generally, for any group whose irreducible

matrix representations are known. The linear combinations of product functions ly A,) Iy2F2)
that transform according to the different irreducible representations of the group in question

may be written in the form
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layvt) z /I S IL I) Y2i,2) (YuII 1 Y 2,r 2IaYVL) (8-40)"V l 2

The inverse transformat ion is

....) IY'22 ("YIY 1Y2121 (841)

The extra index a is necessary whenever there is more than one linear combination of

product functions that transform according to the irreducible representation P. The number

of times that tile product representation Ii x 1') contains the irreducible representation rk

is, according to Eq. (4-27),*

nIik v X (i) N(Y) ' (8-42)
n ii'kR R

Tile functions jayli) labelled by different values of a may be chosen to be orthomormal,

and the coupling coefficients may be considered as the elements of a unitary matrix, so that

(ay/I'y 1l/IY 21 L2 ) = (YlIrlY 2IL2IaYL)* (8-43)

The set of product functions lyl 1 l) 1Y2112) transform under an operation R of the group

according to the direct product matrix D(R) = Pl(R) x [ 2(R). The "coupled" functions Iayli)
transform according to a matrix D'(R) which is in reduced form, that is, it has along its main

diagonal the matrices F(R) of the irreducible representations contained in the direct product

r x r2, and zeros elsewhere. The representation matrices are relted by a unitary trans-

1 formation of the form of Eq. (2-16)

I D (R) = At D (R) A (8-44)

The coupling coefficients are the elements of A and may be determined by solving the

above equations. This is the method outlined by Koster 7 .

I
If we write nij k = (I'i I') I r-), these "coefficients of composition" of the group are non-negative integers

satisfying symmetry relations of the form

IW ir' Irk) = (ri" r " I rk') = (ri I'i Irk) = (Wrk" I ri")

I
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Explicit expressions for the coupling coefficients may be obtained in a more straight
forward fashion by use of the projection operators, acc rrding to the methods of Section 4.
We shall consider first the case when the representation I' is conmined only once in the
direct product I'1 x P 2. We can then write the operatot I()') of Eq. (1.-14) in the form

p y 1, I (yr,.I = ' Y (yp" R Iyit) It (8-45)IIt'l R

In general, whcrn operating on a product funcfion ly IP 1) IY2 112) it generates a linear

combination which belongs to the i,'-th row of the irreducible representation F

P(Y), Yl 1I) i1 2I 2Y = I'l ' ') (Yll I Y lit IY21L2 ) (8-46)

provided (yLy 1Y1P 1Y2p2) -- (YI IY2142 jyOt)* 1 0. If this does not vanish, we can write

y~t (Y IPIY212 I h (yl 'IR Iypi)* R IYIAl) IY2'2)R

(8-47)

= , Iylpj) lY2It2 *) (ylp. I Rlylpl)(Y21t' IR1Y2P2)(YJL'JRIyp)*h 1 2

Comparison with Eq. (8-40) leads to the explicit expression for the coupling coefficients

in terms of the matrix elements of the irreducible representations

(Y 114 2 2 ' Y L')A =

(8-48)

h (y 11A I ,211 21YA ) R

By letting it' , IA , and it' assume all possible values, while keeping itl, 1t 2 , and it fixed,

all the coupling coefficients are obtained with the proper phase relations. A common phase

factor is still, of course, arbitrary. In the particular case of the two-dimensional unitary

group, the expression for the coupling coefficients takes the form

( j2 mjz irjm') =

(8-49)
2i (j I 'R 1m 1 )(j 2mJIRIj 2m2) (jmn °Rljn,)*dR

8rr2 (j 1 m 1i 2m 2 Jjm)* R
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which is equivalent to Eq. (17.22) of Wigner 1 . If the explicit expressions for the elements of

the rotation matrices, Eqs. (5-9) and (5-10), are introduced in Eq. (8-49) one arrives at the

general expression for the coupling coefficients which was given without proof in Section 8,

Eq. (8-12). As already mentioned, the above expression defines the coupling coefficients

aside from an arbitrary phase factor, e"", common to all the (j 1 ilj 2 m21jm) for given J1,J2, J

and all possible values of m 1 1, m2' m. This is usually chosen so that the coupling coefficients

for m1 -= j 1 are real and positive. Since the integral on the right hand side of Eq. (8-49) is a

real number, this choice makes all the coupling coefficients real.

In general, a reducible representation may contain a given irreducible representation
(Y)

r more than once. We shall therefore express the operator P A symbollically in the general

form

p(Y) = ayp'I (ayu, i (8-50)f, Pt a

where the index a assumes n different values, corresponding to the number of times that

the irreducible representation y is contained in the reducible representation under consid-

eration, ny being given by Eq. (4-27).

If P(Y) operates on a product function, we now have, instead of Eq. (8-47),

I()11 1) Iy2P2) I= Y (-Y 1Y' (yIPIYpl 2 t2)

(8-5 1)
d= :_ • • '€I) )22 (yjpit 1111yt,11) (Y 2111 JR1Y2t2) (yp 'IRlyu)*

=h lylI'#L) IY2Y2) .(i~Rvx

The (known) sum over the group operations on the right hand side is not in this case pro-

portional to one of the coupling coefficients, but rather a linear combination of ny of these,

since Eq. (8-51) premultiplied by a particular product function (y1t, 1Y2ftL I gives

(Y1''YA; I z ,I YIfAiY 2! 2 )

S "% (y A' .Ia ly tlp ) (Y2P{ IP, I'2,2) (yl,'IR jy,0* (8-52)

= Z(y.[2/tlalt) Y 2PlY/2 jayj,)*

where use has been made of Eq. (8-43).
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Although no simple explicit expression results, there is no difficulty in obtaining the

coupling coefficients. As indicated in Section 4, we may operate with p(YJ on ny different

product functions in the form given by Eq. (8-51). If the resulting functions are not orthogonal,
an orthonormal set may be constructed from them by any of the usual procedures, or by the
methods of Section 4. These may be taken as the ny desired layp I) functions, and the co-

efficients of the 1y1,'P ly2P•) are the coupling coefficients (y1J1Y21•2 laytI'). There is,
consequently, considerable arbitrariness in the choice of the cay[L') functions, since any
other set of ny. functions f/yp ') obtained from the layp ') by a unitary transformation is

equally acceptable. The corresponding coupling coefficients are related to theprevious

ones by

(yIP. y2'YA IP1yP,') (yIpLIY21-layp•) (alp) (8-53)

where the coefficients (arl) are the elements of a unitary matrix of order ny. This arbitrariness

is the usual one encountered whenever there is a degeneracy; in the present case the ny

functions layti) all belong to the same eigenvalue (unity) of the p-th row projection operator

There are several reasons that make it desirable to introduce further conditions to

remove the arbitrariness in the choice of the layL). The simplest reason concerns the iden-

tification of the n y different functions. For a completely arbitrary choice, a represents only

a running index, and conveys no information about lay/L). In order to specify this function it

is then necessary to list all the coupling coefficients (y1 1L1Y2fi2 Jay/) of Eq. (8-40). A better
way of identifying a given layjL) is by means of a generating function, that is, in the present

case, a certain linear combination of the original product functions such that one of the P(y)

operating on it generates layI). As indicated in Section 4, the generating function has to

be orthogonal to the ny-1 remaining lay,) functions, and can always be chosen so that it

contains at most ry non-vanishing coefficients.

What is most desirable, in principle, is to arrive at a set of layfl) which are eigen-

functions of some operator (or set of operators) in such a way that every value of a cor-
responds to a different eigenvalue. Alternatively, it is usually possible to find some symmetry

group, different from the one under consideration, such that the coupled functions may be
classified according to different irreducible representations of that group.

The preceding remarks are perhaps best illustrated by a simple example. Let us con-

sider the reduction of the direct product representation F 1 x G3/2 of the cubic double group
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FI x G3/ 2 = E 1/ 2 + E5/2 + 2G3/ 2  (8-54)

which contains twice the G3/ 2 irreducible representation. As basis functions for the F 1

representation we may take the angular momentum eigenfunctions in1ml) for jI = 1, and

similarly for G 3/ 2 the functions 1j2 m2 ) for j2 = 3/2. The coupled functions may be made eigen-

functions of the total J2  (j 1 + J 2)2 thus obtaining two sets of G3/ 2 functions, one corre-

sponding to j - 3/2, the other to j - 5/2.This is also equivalent to classifying the coupled

functions according to the irreducible representations of the rotation group Rp.

Similarly, the direct product of the representation F of the tetrahedral group T with

itself

1FxF A + E-+2F (8-55)

contains the representation F twice. T is a subgroup of 0 and we can choose sets of functions

of type F , in 0 as basis functions V for the group T. The corresponding direct product in 0 is

F 1 x F 1 =AI +E + F 1 + F 2  (8-56)

so that the two sets of F coupled functions of the group T can be classified, one as F1 ,

the other as F 2 , under 0.

ORTHOGONALITY RELATIONS

These are simply an expression of the unitary nature of the transformation (8-40, 41)

ayti

ay[L (y 2Iiy2I'2 {a (y 04 y2f.t2 IaYP)* = • (/1A,/'i) 1 (1 20i') (8-57)

(ay/• LyvL 1Y2P2) (YlPtY2112 ja'ygl

I (•V1,y2W 2 *ay,)* (Y1 •,i 21t2 la'y''L') = 8(a,a') 8 (y,y') (If') (8-58)

f' lit 2

I
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COUPLING RULES FOR THF (yi°lR lyp)

The coupling rules for the elements of the representation matrices may be obtained by

the same arguments used in the case of the rotation matrices, Eqs. (8-30) to (8-33). In the

general case we have

(y 311; jR1Y 3P3)

- X "(a3y3l,;I yl4y2' ) (YiIIiY 2P21a 3Y3I3) (yv', IRlylp 1) (y 2p'jRty 2j 2)
A 1,12 IL VI

(8-59)

(YvLpiRjyiuLj) (Y21'2' RjY21'2)

a~y3 IL (ylly 2 /a 3y3l") (a 3Y3, 31Y1I-1 Y21-2) (Y3fL?,RlyY39 3)a3Y3 113'Pi*

(8-60)

As in the previous formulae, the coefficients (a 3Y31A3 1YlVlY21' 2 ) f.ay be replaced by

(Y 1 L1Y2F2 a3Y31'3) *"
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9. COUPLING COEFFICIENTS FOR THE POINT GROUPS

The coupling coefficients for the point groups are easily obtained from the results of

the previous Section.

If only one-dimensional representations are involved, the coupling coefficients may be
taken to be unity if F 1 x 1"2 = V, and zero otherwise. They are thus identical with the niik

of Eq. (8-42) and are easily obtained from the rules for representation multiplication.

For the degenerate representations, they may be obtained from Eqs. (8-48) or (8-52)
and the irreducible representation matrices. The coupling :oefficients given in this Section
correspond to the choice of representation matrices given in Section 6, Tables 6-3 and 6-4.

GROUPS Cn' Cn,, AND S2n

The representations of the groups Cn, Cnlh, and S2. are all one-dimensional, and the
coupling coefficients may be chosen to be one or zero.

Thus, for example, for the C. groups, the multiplication rule is

III X F 2 = rP3 (9-1)

where

13 -/IL +/I2 + n (9-2)

the plus or minus sign being chosen so that

-n/2 < A3 < n/2 (9-3)

Accordingly, the coupling coefficients are of the form

(YIplY21p 21Y393) = 8(113, tll + 02 1 n) (9-4)

For the groups Cnh (a even) and S20 (9 odd) we have, in addition, the multiplication

rule

9-1
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g x g 9 u g (9-5)
gxu=u

and the coupling coefficients are

(aiYIIA, U2Y21L2k73 Y3 1$3 ) - 8.(p 3, IL + P2 1 n) a (03, a, i u2) (9-6)

where, as indicated previously, a = I for functions of even parity, and a = 0 for those of odd

parity.

For the groups Cnh (n odd) and S 2 n (n even), isomorphous with C 2 0, the results for C.

apply, with _n replaced by 2n.

GROUPS Dno Cnv (n even)

The coupling coefficients associated with only one-dimensional representations may

be taken as unity or zero. The multiplication rules for these are symbolized as follows

A xA=BxBB A
A x B =B (9-7)

(1) ,x (1) -. (2) x (2) ,=(1)

(1) x (2) =(2) (9-8)

We shall label the basis functions lyp) for the two-dimensional representations EY as

ly) or 1-y), for brevity. The product of these and one-dimensional representations are always
of the form

A x Ey Y Ey B x Ey Y Ea/2 -y (9-9)

The coupling coefficients are given as follows
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TABLE 9-1

A1 x Ey Ey A2 x Ey EY

1Y) I-Y) IY) I-y)

JAI) Iv) 1 0 JA2) Iv) 1 0

IA1) I-y) 0 1 IA2) 1-y) 0 -1

B 1 x Ey En/2 -y B 2 x Ey En/2 -y

2y -- a y I--Y) L+Y

113 1) 1Y) 0 1 1132) 1Y) 0 1
1131) 1-7) (_1)2y 0 1132) 1-y) _(_1)2y 0

In these tables, as well as in those to follow later, the coupling coefficient

(yILPPY 2112IyA) appears in the row labelled by JAI) 1It2) and the column labelled by Ij).

In general, the product of two degenerate representations is of the form

EYI xEy2 E- IY+Y2 + E yl-2 (9-10)

However, if y+ = n/2 we have instead of E *I+2 two one-dimensional represen-
tations, B 1 and B 2. Similarly, if YI-Y2 = 0, the place of EyI-y2 is taken by the two-one
dimensional representations AI and A2. The coupling coefficients for the different possible
values of YI 4 Y2 and y! - Y2 (assuming YI >,Y2) are given in Table 9-2.
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TABLE 9-2

O<yl+y 2 <n/2 YI + Y2 = n/2 n/2 <y> + y2< n

E x EY2 Ey BI + B2 En-y1 4 1 l-Y

IYI+Y2) I-YI-y2)1 131) 1132) in-Yl-Y2) 1-n+yl+y2)

lyd) 1Y2) 1 0 TT2 V1  o (2)2(o'l+Y)

1-yl) I-y2) 0 1 QT2 -v 72 1 0

O<yl-y 2 < n/2 YI-Y2 - 0

Ey X Ey2 EYw- Y2 A 1 + A2

y_1-y2) IFYi+Y2) IA 1) IA 2 )

lyd) I-Y2). 1 0 V)1/2

I-Y1) IY2) 0 ( -1 ) 2yl (_l) 2yl/VT " - ) 2y 1/VI

GROUPS D, AND Car (n odd)

The same results as for n even are valid, except when the complex representations
B 1 and B2 are involved. In particular, it should be noticed that, unlike the case of n even,

one now has

B1 x 131 = B2 x B2 - A2

B~x B2 =A 1  (9-11)

In addition, the coupling coefficients involving l13 or B2 and the doubly degenerate

representations cannot be chosen to be all real. The coupling coefficients which differ from
those for n even are

(BIB IA 2 ) = (B2B 2 JA2) - (B1 B2IA1)-- 1 (9-12)
(BIB11A1) = (B2B21 1) = (BIB 2IA2) = 0

and those in the following Table 9-3.
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TABLE 9-3B ×E E

BixE >, E•._ B) E

2 y

2_ _ 2 2 2

Ip ) I) 0 1 1112) iy) 0

In,) -y) i(-1) 2y 0 1B2 ) I-y) -i(-1) 2 y 0

I
>'I + Y2 - n/2

I YI X EY2 B, + B 2

3 ID 1) 1B2 )

1yO) 1y2) •/T/
I-Y 1) I-Y2) i/1,,r - i 1,ý

GROUPS Dh (n even) AND Dad (n odd)

The same results as for D , apply, with the additional rule

gxgxuxu g (9-13)

U X g =U

I GROUPS Dah (n odd) AND Dnd (n even)

The same results as for D, ( n even) are valid, with 2n in place of n.

I
GROUP 0

I If thc elements of the representation matrices given in Table 6-4 are introduced in

Eq. (8-48) and the summations over the values of the angles a and y are performed, one can

easily arrive at an expression for the coupling coefficients which, for the choice of functions

referred to the cubic set of axes, takes the form

I
19-
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d1
6 (Y 1 AIY 2142 1ay)

x [c(O)/s/•1c(0)1'21 c(O)1,' + c()Ir)IP C(r). 2A c(ir)..,P (9-14)

+ c(vP/2)• c(yr/2) ' c(1/2) t1
16 IL 1,111 112'1L 2  P

where the coefficients c(f3) are those which appear in Eqs. (7-34, 35) and are given in

Table 7-1.

For the choice of representation matrices made when the basis functions are referred

to the trigonal set of axes (see also Eqs. (7-39, 40)) a similar expression is obtsined

(Y1 P1Y2 P/ ' • y f) d= 1

8 (Y1l 1'Y22 lay/)

) [c(0)u1A 1 c(O)P2L c(2 )ItL + c 11) 1 c(v)/2L'P2 c(n)IL'u, (9-15)

P ~l I'lL +P2-9 1  L~L lI
+ ( C+(r) c+(r) ' C+(O) ' + c(r) c(r) cr) p )

where the coefficients c(13) are those of Eqs. (7-41, 42) and are given in Table 7-3.

The coupling coefficients for the functions referred to the cubic set of axes have been

reproduced in the Tables. In the products

F 1 x G3/ 2 =E/2 + E5 / 2 + 2G 3 /2

F 2 x G3 / 2 = 1/2 + E5 / 2 + 2G 3/ 2  . (9-16)

G3/2 " G3/ 2 --A, + A2 + E + 2F 1 + 2F 2

some irreducible representations are contained twice and therefore Eqs. (9-14) and (9-15) re-

quire a slight modification, according to Eq. (8-52).

As indicated in the previous Section, the choice of the two sets of basis functions of

the same symmetry in the product may be done according to different criteria. If we choose

9-6
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as basis functions for (ile original FI the Ijni) functions for j = 1, and for the G 3/ 2 the Ijin)

functions for j ý- 3/2, we can choose linear combinations of product functions which are

eigenfunctions of the total j 2 , so that

FI (jI I 1) x G3/ 2 (J2 = 3./2) =
(9-17)

=El/2(J = 1/2) + E5!2(J = 5/2) + G3 /2(J = 3/2) + G3 /2 (J = 5/2)

and similarly

G!2( 1 3/2) x G3 /2 (J2 = 3/2) =

=A 1(J =0) + A 2(J = 3) + E(J = 2) + FI(J =1) + FI(J = 3) + F 2(J = 2) + F 2(J =3).

(9-18)

The corresponding coupling coefficients are given for convenience in Table 9-4.

TABLE 9-4

F, x G3/ 2  EI/2 G3/ 2  E5 / 2  G3/2

_______1112) 1-1 /2) 113 /2) 1112) 1-1/2) 1-3/2) 15/2) 1-5/2) 13/2) 11/2) 1-1/2) 1-3/2)

11) 13/2) 0 0 0 0 0 0 Vr-IT6 0 0 0 0 176

11) 11/2) 0 0 V75 0 0 0 0 - V/T1T 0 0 0

11) 1-1/2) vi7T6 0 0 %/15 0 0 0 0 0 o o10 0 0
11) 1-3/2) 0 VTF2 0 0 \/275 0 0 0 0 0 -- TI 0

10) 13/2) 0 0 -vr3/5 0 0 0 0 -v 73 -v/7-5 o 0 0
10) 11/2) -ý/I73 0 0 -VTI7T5 0 0 0 0 0 o V/5 0 0

10) 1-1/2) 0 o- 0 0 \' 71-5 0 0 0 0 -o 73  o

10) 1-3/2) 0 0 0 0 0 . . 0 0 0 0 Vr/is
1-1)13/2) \ o o -V2T5 0 o0 0 0 0 \1-i7-1 0 0

1-1)11/2) 0 J7• 0 0 -V78r/ 0 0 0 0 0 -T/T6 a
1-1)1-1/2) 0 0 0 0 0 -J275 / 0 0 0 0 V=
1-0)1-3/2) 0 0 0 0 0 0 0 147T-V371 0 0 0

II
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TThe coupling coefficients chosen there for F 2 G3X 2 are related to those for FI x G3/2

by simple symmetry relations.

This choice of coupling coefficients is not the one we have preferred in the final

Tables. In these, the product functions in G3/2 x G3/2 have been classified as symmetric

or antisymmetric with respect to a simple linear transformation of the original functions

q /2- 111/2 A (9-19)

where the matrix A is

0 0 -
A 1 0 0 (9-20)

0 1 0

(This may be recognized as the matrix of coupling coefficients for the product A 2xG 3 /2- G3 / 2)

The product functions of G 3 /2>C×3/ 2 which are symmetric under the transformation belong to

A 1,A 2, F 1, and F 2, while the antisymmetric belong to E, F 1, and F 2. The F 1 or F 2 symmetric

functions are designated in the tables as F 1(1) and F2(+), while the antisymmetric as F

and F2(- . It may also be noticed that this choice leads to simpler results for the coupling

coefficients.

The coupling coefficients for the G3/ 2 functions in the products F 1 x G 3/ 2 ind

F 2 x G3 /2 have been then obtained from the previous ones in such a way that they satisfy the simplest

symmetry relations. We shall consider this point in more detail in the section dealing with the

symmetrized coupling coefficients.

The relation between the F1(4) or F 2(-) and those of Eq. (9-18) is

F,(G) = IFI(J = 1)+ 2F 1 (J Q 3) ] / /T (9-21)

F = [2F1 (j = 1) - F, (J 3)]/,]T

Similarly the G( and G of the product F 1 x G are related to those in Eq. (9-17) in

the form

G 3/2 G) = G 3 /2  3/2) + 2G 3 /2 (Q = 5/2) /VT (9-22)

G 3 /2(-) = [2G3 /(J = 3/2) - G 3 /,2 (J = 5/2)] •J

9-9
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GROUP T

The coupling coefficients for T may be obtained from those for the group 0 with
some slight modifications. With our choice of representations the coupling coefficients
involving A, F, and E 1 17 are the same as those for the group 0, taking into account the
correlation

A I, A2 . A

FI, F 2 .F (9-23)
E 1/2, E5/2-€.- T' /2

The choice of representation matrices for E and G3/ 2 of the group 0 is such that the
basis functions for E., Eb, Ga, and Gb of the group T are obtained from them by a trans-
formation, Eq. (7-45)

I'. = IFo A (9-24)

The matrix CT whose elements are the coupling coefficients (Y11l'Y 21'21aY31I 3)T for the
group T is obtained from the corresponding matrix CO for the group 0 by means of the
transformation

CT = [A() x A(2)] CoA( 3 ) (9-25)

where the matrices A(Y) for the E and G3/ 2 representations are those given in Eqs. (6-17)
and (6-18), For the remaining representations the A(Y) are unit matrices.

It should be remarked that the coupling coefficients involving E a' Eb, Ga, and Gb,
cannot be chosen to be all real, as in the previous case of the D, groups with n odd. This
is due to the fact that the representations in question have complex characters or, in other
words, are not equivalent to their complex conjugate representations.

GROUP Td

Since the representation matrices have been chosen to be identical with those for the
group 0, the coupling coefficients are also the same for both groups.

GROUPS Th AND Oh

These are direct product groups, and the coupling coefficients are obtained from those
for T and 0 taking into account the additional parity multiplication rule.

9-10
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10. IRREDUCIBLE SPHERICAL TENSORS

When considering atomic wave functions it is often preferable to operate in spherical

rather than cartesian coordinates. The spherical basis functions appear in a natural way as

basis functions of a representation where J and J are diagonal. This is intimately related

to their transformation properties under rotations of the coordinate system. Thus, forj example, spherical harmonics with different j values are basis for different irreducible

representations of the rotation group in three dinmensions, RP. Similarly, different in values

correspond to different irreducible representations of the group of rotations about the z-axis.

Cartesian coordinates (or momenta) and their products afford bases for representations

which are, in general, reducible. For example, although x, y, and z themselves are basis of

an irreducible representation, (j = 1), only the appropriate linear combinations

(- Cx + iy)/V2= (4 n/ 3 )! rY ,

z - (41r/3)/ r Y, (10-)

SC(x -iy)1/'/- (4v/3)V2 r Y-1

Sdiagonalize J ..

The six products x 2 , y 2 , z 2 , xy, xz, and yz afford a reducible representation. There

is a linear combination

x2 +y 2 + y 2 = r 2  (10-2)

which is invariant under rotations, as YO, while five other appropriate linear combinations

will transform as the second order spherical harmonics, Y'. Similarly, we may consider

the nine products of the cartesian components of two vectors. The linear combinationI
XtX 2 + Yl Y2 + ZlZ 2 C= (11 ' ?2) (10-3)

I is a scalar and remains invariant tinder rotations. The three linear combinations

I
I 10-1
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N1Y2 - YlX2

y17z2 - 1-1y2 (10-4)

Z 1 X 2 - Kl72

afford a basis for the j = 1 representation, just as Y' , The five remaining (independent)

linear combinations afford a basis for the j = 2 representation, as the Y' spherical harmonics.

When we come to consider the quantum mechanical operators associated with functions

of the coordinates or momenta the preceeding considerations about their transformation

properties are also valid. In addition, we shall find that the matrices of operators in
spherical basis are also simpler than in cartesian. A know example is that of the angular

momentum operators themselves. For p-states, (j = 1), the matrices for Jt, Jy, and J. are

],- 0 1 ;ý 0y -i/v 7 I-
1///V7 0 i/ (

11 1 1I¶/V 1vT;Y~(~/ 0 / 0 i 1,f

(10-5)
The corresponding angular momentum operators in the spherical system are

J 1 =-(J +iJ ,)/ V7 Jo J; 3 -i 0 (J,-iJy)/V/ (10.6)

and the matrices for p-states

( - O 01 JO = 100 ; (. 1 0 0 (10-7)

000 0 0 1 0

Similarly, we have seen (Eq. 8-37) that the only non-vanishing matrix'elements of the spherical

harmonics are of the form

so that there are only elements along a line parallel to the main diagonal.

10-2



It should be noticed that the matrices of the operators in the spherical basis are not

Ilermitian., While for a Hermitian operator ( 11 = Ht) such as %, we have

(R mI , I V 'm') = (V'm'1 Jx I tm)* (10-8)

for an "irreducible tensor operator," in the spherical basis, such as Y, we have

(tm I YLM ') = (.-1 )M ( 'rM' Y•.I tm)* (10-9)

or, more generally

(T)M; (-I)M TtM (10-10)

(This merely reflects the fact that the corresponding functions are not real. Compare
(10-10) with the definition (Ym)* = (~l)M Y'M adopted for the spherical harmonics).

With the preceeding considerations in mind we may now define an "irreducible tensor

operator" of rank L as a set of 2L + 1 functions (operators) which transform under rotations

of the coordinate axes in the same way as the spherical harmonics of order L:

RTM R- 1 -= ,D)L,(aupy) TM (10-11)

(Remember that if the basis functions b are changed by the transformation R in the form

S- Rip, an operator or matrix is changed in the form T -, R T R' 1. See Eq. 3-7).

Alternatively, it may be defined by the condition that the set of operators TM1 satisfy

the commutation relations

ItJt ±iJY, TM 1 (L TM)(L ± M + 1) LT 1

[ie, TM ] - , TM (10-12)

Both definitions may be shown to be equivalent. The second is the one given by Racah 8.I Since the proof is relatively simple we shall sketch it briefly.

1 10-3
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We shall first remember the connection between the rotation operators and the

angular momentum operators, Eq. (5-4),

Rn,(V,) = eI•n " J) (10-13)

Sis the angle of rotation about the axis defined by the unit vector n, and (n • J) is the

component of the angular momentum along that axis. This expression is often taken as

the definition of the angular momentum operators. One should also remember that the

DEM •) are nothing else than the matrix elements of R in the basis afforded by the spherical

harmonics yM
DL 

io J

DM = (LM'IR I LM)- =(LM'I ei(n LM)

For an infinitesimal rotation we may expand R in the form

R e eiOIn , J)= io + (n .J) + .. (10-15)

Eq. (10-14) now takes the form

DL,1 j(LM'I 1+ iO (n •J) I LM) (10-16)

8 ( V(M M) + io (LM 'I (n J) I LM)

We can now substitute the above results in (10-11) keeping terms only up to the fPrst order

in ,.

For the left hand side of (10-11) we obtain

R TM R- 1  (I + ifi (n.J)) T M (I - ik (n.J)) (10-17)

T- + io ((.-J) T"- T"(n .J))

For the right hand side,

�TDLT TL ' . io Y.,(LM'I (n.J) ILM) TL (10-18)
MMM

10-4
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and finally

[ (n.J), T M I = 1, TLM (LM 'I (n . J) I LM) (10-19)
L L

We only have to substitute on the right hand side the values of the matrix elements of the

components of the angular momentum. The non-vanishing elements are

(L,M+1I +x .iJ2 1LM) - [(L-M)(L+M+ )Y2

(10-20)

(L,M-1IJ,-iJyILM) 
- [(L+M)(L-M+1)]A

CL M 112LM) = M

Substitution in (10-19) gives the commutation relations (10-12).

ADDITION AND MULTIPLICATION OF TENSORS

Two tensors of the same rank may be added to give another tensor of the same rank.

Also, two irreducible spherical tensors TL and TL may be "coupled" to give1 2
other irreducible tensors with ranks L such that IL1 -L 2 1 <. L !..L I + L 2 0

The addition and multiplication of tensors will be treated in some more detail in the
next Section.

10-5
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Matrix Elements of Spherical Tensors

We consider now some general properties of tensor operators in the spherical basis.

We assume that the basis functions Jjm) are cigenfunctions of (the total) J 2 and J z of the

system.

In the commutation relation (10-12,b)

Jz T-TN'J- -MTM (10.21)

we can multiply on the left by (jmh, and on the right by IJ Ini). We obtain

m(jmITM' I j'in') -'(jmlT,. ij jm')(jmjmTJ Tj "m') (10-22)

or

(m - in'- ) (jmIT• I i'm') 0,

so that the only non-vanishing elements will be those for which m = M+m'. Within a given

j,j 'submatrix they are all along a parallel to the main diagonal jm, jm, just as in the case

of the matrix elements of the spherical harmonics or J 1, JO, ]-I-

If the same procedure is applied to the other commutation relations (10-12,a)

[J. - iJY, TM I = I (L; M) (L + M 4 1 ) 1A TM- 1  (10-23)

one obtains recurrence relations between matrix elements with the same L, j, j'and adjacent

M, m, and m'. These may be written as

f(L, M+I) (jmJTL I j 'in') = f(j, m+l)(j, m+l I T1MI I I 'm')- f(j m') (jmn ITM+ 1 Ij 'm'.-l) (10-24)

f(L, M) (jm I TM j Jim') = f(j, i) (j m-1lTM-Ij 'm ') - f(j , mS1)(jmJTM-1IJ "m'+1) (10-25)

where

f(j, m) = (j+m) (j-in+t) (10-26)

10-6
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It is important to notice that if one matrix element (jmlTM I j 'm 1/0 is known, all the

elements for allowed values of m, m', and M and the same j, j', L, can be determined by

means of the recursion relations. Also important is the fact that the Clebsch-Gordan

coefficients (j 'm'IMI jm) satisfy the same recursion formulae (See (8-10,11) as the

(jmIT' I j 'm , and both vanish unless M + m'- m. From this, and the linear nature of the

recursion relation follows the

Wigner - Eckart Theorem.

This states that the matrix elements (jmLTM Ij 'im') are proportional to the Clebsch-

Gordan coefficients

(jm ITM(2j +. 0 1) TL 11i (j'm'LM jim). (10-27)

the ratio being independent of the projection quantum numbers m, m, and M. It is only

determined by the physical properties of the tensor operator and the system. The geo-

metrical properties, which depend on the orientation of the reference frame, are entirely

contained in the Clebsch-Gordan coefficient.

(ij 1 TL II j' ) is called the reduced matrix element of the tensor operator TL. This is

the factor that differentiates two tensors of the same rank.

As in the case of the Clebsch-Gordan coefficients, the "double-bar;' matrix elements

may be defined in several ways (See Edmonds, 2 p. 88). The definition given is equivalent

to that of Edmonds and Racah, the only difference being one of notation

(ajm ITL I a'j'm)= m (-11- (am j1T 1a ) j L j(0-28)
= (_l)i+m (a iII TL 11 a'j") V(jj 'L; -rmm' M)

Physical Interpretation of (a j IITL It a"Oj)

In virtue of the orthogonality of the Clebsch-Gordan coefficients it easily follows

that

10-7
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, )(ajmjTj• la'j'm')12  j (aj 'T~ljrc/)l 2  (10-29)
M, M,M

In radiation theory, if TL is the operator inducing transitions, the sum (10-29) over magnetic

quantum numbers and polarizations is defined as the line strength of the transition (Condon

and Shortley 9 , p. 98)

S (aj, a'j') I(ajlITLI[ a'j') 2  (10-30)

and is symmetrical in the initial and final states.

The Reduced Matrix Elements of J and YL

The (ill TLOI j") are usually determined from (10-27, 28) after computing the easiest

of the (jml TM I j 'm ). For the angular momentum operator one obtains

(j I II Ij') j(j + 1) (2j 4 1 )1¼ I (j, j) (10-31)

For the spherical barmnnics, we have

Y2L, [)(2L t, 1)(2# .1, , 1) (2 1) L ' 1 -2

(10-32)
1(- 12)t-i-L I )(2' L 4 1 4" 2+ 1). Y (2"• (10 (/g -2

[(2>(2 2 1

where g--(4+L+ V')/2 must be an integer.
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11. IRREDUCIBLE TENSOR OPERATORS

The concepts and results of the previous section may be easily generalized to groups
of symmetry other than spherical. We shall consider groups of unitary operators and, as
usual, we will assume that the matrices of the irreducible representations are chosen to be
unitary.*

Consider a set of operators T y), where A assumes d different values, which under
the operations R of the group transform always into linear combinations of themselves, in the
form given by Eq. (3-7)

R T R' T (y)XLRyI ) (R111)

The matrices with elements (yXilRkly/) afford a representation of the group. If this repre.
sentation is irreducible, the set of d . operators is said to constitute an irreducible teos"r
operator "(y) belonging to the irreducible representation P' of the group. The individual
operators TA are designated as the components of Ty, and in particular--xy) is said to
belong to the X-th row of the representation. As in the case of the basis functions, this
definition is made in reference to a particular matrix representation. In what follows, we
shall assume that the tensor components-T(y) and the basis functions IyVp) transform under
the group operations by the same representation matrices, so that

Rlayp) = % jayX) (yXlRlyp) (11-2)

In virtue of the analogy between Eqs. (11-1) and (11-2), the algebra of tensor operators
may be developed along similar lines to that of the basis functions.

In Section 10, irreducible spherical tensors have been introduced by way of the operators corresponding
to the spherical harmonics IM and the notation TL was used to preserve the analogy. From now on we
shall follow the most prevlent notation in the literature of tensor operators. In this notation the previous
TL will be written as m

'I 11-i
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PROJECTION TRANSFOEtIATIONS

By analogy with the definitions of "projection operators" we may now define "projection

transformations" or "step transformations", which act on the components of tensor operators

in a corresponding fashion. Dy multiplying both sides of Eq. (11-1) by (yV Rly Y /hi

and adding over all the group operations, we obtain

d ,P g'I~• "*R"(Y)I "

I: T T(Y) dy , (y`X'JRby,'')*(yXlRlylA)
Sh P,

(11-3)

T £ T•Y) 8(X',A) g(y',y) 5(1,',1')

-I( (Y' ) g(1( 11', 1) T (Y)
A

where we have made use of the orthogoi'ality relations, Eq. (3-13).

The transformation analog of the expression (4-14) for the projection operators may be

written symbolically as

(Y)
I (yXiRlyjt)* RI JR-1 (11-4)

where the operator expression RI 1R 1 on the right-hand side has been written in that form

to indicate that it acts on an operator T by meanr; ot a similarity transformation RTR" 1 .

The analogs of Eqs. (4-9) and (4-10) are

0 (Y) T (y' T Y6(yly)

O(y) O(Y"1 0(Y) (,) ,

The (N, will be designated as "projection transformations" or "step transformations".

The decomposition of reducible operators into irreducible tensor operators follows

along the same lines as for basis functions.

11-2



THlE ADJOINT OF A TENJSOR OPERATOR

The transformation properties of the adjoint of a tensor operator T may be obtained

from Eq. (11-1). Since the R are unitary, we obtain

R T () tR -1 T(Y) t (yXIRllIY,)* (11-7)

and therefore T belongs to the complex conjugate representation r*.

I For the most important groups that we shall consider, the representations afforded by

the matrices D(R) and D(R)* ar, equivalent

I CD(R)C-1 = D(R)* (11-8)

Iand T(Y) is self-adjoint. The relation between the components of To') and "(Y) ' is, according

to Eqs. (3-3) and (3-5)

(Ty) X, T ( (yjL'IC yI ) (11-9)
II iL /

IIn spherical basis, the matrix elements of C may be taken as (flef. 1, p. 288)

I(JM'ICc JM) ý (-1 )J-P% a(M -Ni) (11-10)

apart from a common arbitrary phase factor, and therefore

( -1)J+N4 T(I) (11-11)

hi -NI

However, the definition introduced by Racah 8 , which is the one most widely followed
in the literature, is instead

ST(K) t - (-I)Q T(K) (11-12)
Q -Q

which follows the conventions in the usual definition of the spherical harmonics (Cf. Eq. 10-10).

We also follow this definition in the present work when dealing with sperical tensors.

I
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COUPL!ING OF IRREDUCIBLE TENSORS

Two tensor operators transforming under the operations of the group according to the°

same representation matrices may be added to give another tensor operator with the same

transformation properties. This follows from the linear nature of Eq. (11.1).

As in the case of the basis functions, two irreducible tensor operators T(YG) and T(72)

may be coupled to give tensor operators T (Y) belonging to the different irreducible represen-

tations contained in the direct product V1 x F 2 . The coupling expressions are analogous to

Eqs. (8-40) and (8-41)

T(ay) X T (Y ) T(Y2) (y7PIY212laYl) (11-13)
1A IL I,/12 1, 1 I L /2

T(Y ) T(Y2) I • T(a') (yLy Y2k2)1-14)I• IA2 aytlt l

where the coupling coefficients are the same as for the basis functions. This is easily proved,

since by use of Eq. (11-5) the derivation given in Section 8, Eqs. (8-45) to (8-52) may be re-

produced with the projection transformation O(Y) acting on the operator product T(Y1) T(Y2)
I fIL I2

The coupling of two tensor operators S(Y) and T(Y) ' which transform according to

complex conjugate representations gives, besides others, a tensor which is invariant under

the operations of the group. The coupling coefficients for this case may be obtained very

easily from Eq. (8-48) taking into account the orthogonality relations for the (y'IRlyJi) and

the fact that for the identical representation A, the matrix elements are

(AOIRIAO) = 1 (11-15)

For the non-vanishing coupling coefficients Eq. (8-48) gives

(yVptL JA0) (yfcp °lAO)* -- 1_ (11-16)

where the labels y and ý are used for complex conjugate representations. We can write

(yi ypp JAO) - e' N'/~ (11-17)

where e"O is an arbitrary phase factor.
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The cmIpling expression for the invariant I(A) is therefore, setting cio - 1,

0 V 1 I ft()= I X ) • (Y) 'r.: f., (11-18)

In spherical basis, every representation is equivalent to its complex conjugate. The

equivalent of the previous equations is

I(a ) 1 %ISM ) T-O (11-19)
0 J2 H_ NNI -M

However, the scalar product of two tensor operators is usually defined as

SO ). T(') (-I )m S ( T(JM (11-20)

NI M .-M

which differs from the previous I(0) by a factor of (-1) 1/ /2J + 1
0

GENERAL FORMULATION OF THE WIGNER-ECKART THEOREM

We shall now consider the factorization of the matrix elements of the components of

tensor operators between basis functions classified according to the irreducible representa-

tions of the group.

flBy means of Eqs. (11-1) and (11-2) a typical matrix element may be expressed as
follows

S(a I T (Y )T lalYlptl) = (a 3Y31A'AR' IR T(V ) R'Rialy~l.i)

- (Ra 3y 3A3 JR T(Y)R-1JRalY1/p1)

(a 3 y 3A3 1T (Y) Ia)yXiR)(yiXiIR~yi,_i)(yXJR lyi)(y 3X3 1RIY 3 13)*

(11-21)

Adding over all the group operations and dividing by h we get

I
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(a"y37'3T(' ) I a yt4 1)IU

= ..L X (a 3y 3X 3 1 Y Iayv~j) I (yl\ RlyLtl)(yXAIRlyL)(y 3X 3 1RIy3.1 3)*Xh A1 A3 R

(11-22)

The sum over R on the right-hand side may be expressed in terms of products of coupling
coefficients by means of Eqs. (8-48) or (8-52). If the irreducible representation r3, of dimen-

sion d 3, is contained n 3 times in the product r', x F, we have

(a 3Y3A3I T(Y)l y i,

(tla Y l l) --

I (a 3y 3X 3 1T X I laytI ) d L (y7 yXly;I 3PX 3 ) (Y1 V I[ILIj 3Y3F13)*

n1 ,3 
(Y)d

-X-' (y1P1yAV 3)* X .._ (Y Y.yIf•3•.) (a3y3A.31 TI A a1 yY.t)

(11-23)

The summations over Al, A, and X3 on the right-hand side are obviously independent of
the indices labelling the rows of the representations. 'We shall write them in the form

((z3Y3 l TI "Q3Y) 11 -aY,) -

%',•X (YX Y\ P 3 (a3y3X3 IT (Y) (yIy fyA)a Iyj•I) 1 -4
KA ONO-\3 i 3 I 3 X 1 (11-24)

and they are usually designated as the "reduced matrix elements". With this definition
Eq. (11-23) may now be written

nj

(a 3y3IL3 1T (Y) a l yl 1$) (YjIPYII 11Y3P 3 )* (a.3y 3 1 TOY), I alYl )

"] 1 (13Y3A31Y1['1YP) (a3Y311 T(OY)II. ýy.) ( 1-5

pV'J7 (11-25)
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If the product F', x 1' -nntains the representation f13 only once the expression of the

Wigner-Eckart theorem takes lie simpler form

(a3y3i'31 T (Y) Ijz lYlH 1)

_ _ _ (y 11Yl'1)'W ) (r3y j TCY) I1ý

- d1 (Y3P1- 1 Y 1v )* (a 3Y 31 .(Y 1lyl ) ( 1 76

Similarly the expression for the reduced matrix elements, Eq. (11-24) also takes a

simpler form, where the index (3 does not appear. It may be mentioned that the summation

over one of the indices may be replaced by multiplication by the dimension of the corre-

sponding representa ion.

It may be worthwhile pointing out that Eq. (11-25) can always be cast into the form

of Eq. (11-26), but this amounts essentially to a new definition of the coupling coefficients

by the condition that the reduced matrix elements of the tensor operator in question should

vanish for all but one value of the index /3.

The Wigner-Eckart theorem forms the basis for the symmetry selection rules. The

theorem concerning the matrix elements of symmetric operators, Eq. (3-19), is also a

particular case.

The corresponding rule for non totally symmetric operators may now be enunciated

as follows- The matrix elements of the type (a 3y 3,L 3 1 T (y) jaly lp.l) vanish if the corre-

sponding coupling coefficients (yl1l1YILYY31' 3) are zero. In addition, if the representation
product I', x IV does not contain the F'3 representation, these matrix elements vanish for

all values of Ij, it,, and 113.

It should be kept in mind that this is only a sufficient, but not necessary condition,

since the matrix elements may vanish because the reduced matrix element is zero. Thus,

for example, the matrix elements of the spherical harmonics ( t mI Y(L), t•am') vanish for

t+ L + V' odd, although the coupling coefficients for the corresponding representations of

R3 are not zero, in general. In this example the reason for the vanishing of the reduced

matrix elements in question may be traced to still another symmetry requirement, namely

the parity selection rules, which are obtained from the consideration of the inversion

symmetry of the basis functions and operators.
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As in previous instances, it is convenient to point out the differences with other
definitions in the literature, which are not always equivalent. Our definition of tensor

operators, Eq. (11-1) agrees with those followed by Rose 3 , Fdmonds 2, and Racah 8 . How-
ever, Wigner's original definition (Ref. 1, p. 244, Eq. 21.16c) is not equivalent to Eq. (11-1),

but is rather

R (RX1RYP)* (11-27)IL 4x

and therefore the T(y) tensor components are the adjnints of those defined by Eq. (11-1).

Ironically enough, our expression the the W/igner-Eckart theorem is not therefore

equivalent to Wigner's since this leads to the following

(a3 y 31 T(y) Ijalylit) 1 (Y30I3 YOL'y ("3Y) (- 3 11 T() IaiYty) (11-28)

instead of Eq. (11-26).

For the general case, the definition adopted by Koster 7 is effectively the same as

Eq. (11-1). In Ref. 7, the equation (4) defining the transformation of the tensor components

appears to be incorrect, but in the subsequent derivation it is actually the equivalent of

Eq. (11-1) that is used. The final expression is also equivalent to Eq. (11-25) although the

resemblance is obscured by the introduction of the conjugate representations 173* and F*.
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I
12. 6-J COEFFICIENTS AND REDUCED MATRIX

ELEMENTS IN COUPLED SCHEMES

THE COUPLING OF THIREE ANGULAR MOMEFNTA

The coupiing of three angular momenta j 1, J 2, and j 3, to give states with definite

total angular momentum J may be carried out in essentially two different ways. One may

first couple J , and 12 to obtain states characterized by an "intermediate" 12, and then

couple these to j3 to give final states with definite total J. Alternatively, one may couple

to the intermedi ate J23 states obtained by coupling J2 and 3"

The expression for the resultant states for a given value of J is in the first case

I( 1 lJ2) J 12 ,j 3 ,JM) = X j 1 2mnt 2) j 3 m3)(j 1 2m12j 3m31JM)m3

1 li 11) J21112) 1j3m 3)(j 1m1 j 2 m2 IJ 2I11 t2)(J 12m1 2i3mn3 1JM) (12-1)

m1ni3

The IJ M) functions obtained in the second case are

IJ 11, ( 2J 3) J 2 3, JM) = h Itm1 ) IJ23m2 3)0(J 1mJ 23 n 2 3 0JM) =m1

1j lmr) U21112) J3mn3)(i 2m2i 3m3i1J2 3n2 3)i 1mn1 j23m2 31JM) (12-2)
mlm3

The two sets of JM) functions for a given value of J obtained according to these

two schemes are not identical, but are linearly related to one another. They constitute two

equivalent representations which are related by a unitary transformation.

Iit, (1 2 j 3)j 2 3,JM) = i 10JP2) , 12J 3 .JM)((j tJ2)J 121j3,J Ii ,(j 2j 3)j 2 3,J) (12-3
112

Time expression for the transformation coefficients is obtained by taking the Hermitian

scalar product of the functions in Eqs. (12-1) and (12-2)

((W 1J2)J 12,J 3'J I J ,(J120) J23,J)

Ym (JMIt 2 m12 j3m3)(j1 2m.. 22ilm JIm2) x (02m2j3rn 3Ij 23m23)(j11 nmj23m2 3IJM) (12-4)

12-1
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THE 6.j COEFFICIENTS

A more convenient and symmetrical form of these transformation coefficients is

afforded by Wigner's 6-j coefficients, defined by

j3 J j231 "2j 12 +1) (2J 23 +1)

The 6-j symbol is invariant against any interchange of columns or the interchange

of the upper and lower indices of any two columns. For example

2 J3 12 (12-6)
1 k2 k3ý kk3 k2 ký k1 j2 J3

These and other symmetry relations will be consider in more detail in the Appendix

dealing with symmetrized coupling coefficients.

The general expression for the 6-j symbol has been given by Racah 8. It may be written

in the form

i~l j2 J3 0 JIj2J3) ]
k k2 It3 1jik2k 3) (k 1j 2k3 ) (k k 2j 3)

X1  +) ( jlj 2j3)l-2j3-1+21

z kl j2+j3+ + j2+kl+ k2-•: lJ+j3+kl+k3-- (J2+ j3+ k2+k3-)

(12-7)

where the factors in the summation are binomial coefficients, while the symbols (abe) are

given by

(a bc) + b(a+b c+ 1) (12-8)
(- a + b+ c)! (a-b h + c)! (a + b-c)!

and are thus closely related to the trinomial coefficients. The index z runs over all the
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positive integral values such that n >, r > 0 for every binominal coefficient (ra) in the sum.

The 6-i coefficients vanish for those sets of values of the arguments for which any

of the (a b c) does not satisfy the triangular condition,,

The 6-j coefficients play an important role in the expressions relating reduced matrix

elements of spherical tensor operators in different coupling schemes.

The numerical values of 6-j symbols required in our work have been obtained by means

of a program for the IBM electronic computer, to which we make reference in the Tables.

REDUCED MATRIX ELEMEN4TS IN COUPLED SCHEMES

In practical applications, it is often necessary to determine the matrix elements of

operators which are obtained from others by the coupling schemes previously discussed.

Similarly, it is also often convenient to choose a system of basis functions resulting from

the coupling of functions of other bases.

In this respect, there are a number of important results relating the reduced matrix

elements in the different schemes.

COUPLED TENSORS IN COMMON BASIS

Let us consider two irreducible spherical tensors T(kl) and T("2) which operate on

the samý set of basis functions. We shall derive an expression for the reduced matrix elements

of the coupled tensor V3

(k) (kl) (k2)"T Y. T T- T (klqtk2q 2 jkq) (12-9)
q ql . q2

in the same set of basis functions in terms of the reduced matrix elements of the individual

tensor operators.

The reduced matrix elements of T(k) are given by

(a1j II i(1k) h11 .j i= i( ( I.q a' m ')(i 'm 'kqljm) (1210)

which is a particular case of Eq. (11-24) after the sum over m is carried out.

The matrix elements appearing on the right-hand side may be expressed in terms

of those for T (kj) and T(k2) by means of Eq. (12-9)
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(a T niT(k) Ia'm') = 1: (k qjk q2Ikq)(ajln( I) T(k 2)
q q 2 q 2

I(k tq lk 2q2 lkq) " (a j mT(k ) 1a"j "in") (a "j "'n .,T k 2) la i 'in ) (12-11)
q I a j". m" qtI q 2

The reduced matrix elements of T(k 1) and T(k2) may now be introduced by use of

the Wigner-Eckart theorem

(aj n IT (k) la'j"m') T . (aj L) T( 1) "J") (a""J11 Txk2) 11.J X

(k 1q lk 2q 21kq) (J "'m "'k 1q IIJn) (j "m" k 2q2 1 j "in ") (12-2)

qlm /(2j + 1) (2j -4 1)

When this is introduced in Eq. (12-10) a summation over products of four coupling

coefficients appears on the right-hand side, which may be expressed in terms of a 6-j coef-

ficient

1 ,y., (jm 'kqljm)(k 1q jk 2q 21 kq) (j ,in,"k jq jljm) (j 'm'k 2q 2l j ,Rin,")

./2 "~ ""- i
"2j+ 1 m'mq

( 1 )I+÷ k 2k 4. 1  (12-13)
1k2 j "ki

The final expression relating the reduced matrix elements of T(k) to those of T(k )

and T(k2) is

(ajl T(() )a' ")

1) V' a'+ II X a"J ")(a"J "'h1 T(k a1)
ak2 kL

(12-14)
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TENSORS IN COUPLED BASES

It is also of interest to derive expressions for the reduced matrix elements of tensors

S(kJ) and 'r(k2) which operate on different sets of basis functions a Ij 1m1) and 1Ja2i 2m2),

respectively, in a basis 1a] M) obtained by coupling basis functions of both sets, in terms

of the reduced matrix elements of S kl) and T(k2) in their respective bases.

The simplest case to consider is that of an operator which acts only on the functions

Ja Ji 1m) or Ia2j 2m2). We shall omit the derivations at this point, and just quote the results.

('i 1j 2 J 1 i j j;, J') =

it j+J 4 ,f(2J kt I t215

(-i)i'i 2+J'4k1  (2J + l)(2J '+1) (• jiI 51 k)11 11l'- Jt) S(j2,j2') j 2 (12-15)

Similarly, for T(k2)

(aj1j 2, J IIT(k 2) 1a " ,)

(- 1)I 3 2+1+J* k2 f(2J + 1) (2J '+1) (a 2 11" (2)1 Ia 'J;) 8(j j t P ) (1216)

2 ~

Another important case is that of the scalar product of two such tensors. We shall

write k - kI k2.

(c~zj~ 2, il .S(k)' T(k) IjU' j2, j )
( 2i•+ 1(J, 2)1k ) / at)( " l"l('I '2

(_l l~ 2 JJ• 1 12 S'a~ ll k) 11(k)11 "

(12-17)

The general case of the tensor product X(K) of S k 1 ) and T(12) involves Ele 9"j

symbols

12-5
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(iJ 1j 2 J XI IIj ~jJ') 2- 2 (2j + 1) (2K + 1) (2J " 1)

)I ki 1

x (aiIIS II(a1 )(a II 2 IIrI (k 2 ) J' K (12-18)

I 2 k2  j2J

The 9-j symbols are related to the transformation coefficients between two coupling

schemes of four angular momentum vectors

(1 1 JJ2  = 2 J12N 2 ,(J 3j 4 )J3 4,J 1 lJ 3)J13,(J2J4)24(J 242J)
J3 J4 J34 ( 12-19)
i3 1234 .(2jl2 + 1)(2J34 + 1)(2j13 + 1)(2j24+ 1)

They may be expressed as a summation over products of six 3-j coefficients, and

also as a summation over products of three 6-j coefficients 2, in the form

J 11 11 J13 1 i 1  1212 1~~1

121 i22 i23' 1() 21(2 A 1) i ll j~ j~ 1 2 3 1 23 i33~

J31 J32 1333
(12-20)
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13. UNIT TENSOR OPERATORS IN SPHERICAL BASIS

From the Wigner-Eckart theorem it follows that operators may be defined by specifying

the values of their reduced matrix elements. This is a convenient form of definition for many

different types of operators such as raising, lowering, coupling, etc.

Of particular interest are the unit tensor operators u(k) of Racah 8 , which play an

I important role in the treatment of the several-electron problem. In a later Section we shall

consider their relation to the infinitesimal operators of the rotation groups in several

dimensions. At present we shall consider the one-electron case and show how the uk can
be related to the familiar angular momentum operators and to the coordinate operators in

spherical basis.

The unit tensor operators u(k) are defined by the condition that their reduced matrix

elements are unity between states with the same aj, and zero otherwise

(-j 'I1 u(k)l 11 j) = (j ,j) ,• (a, 9a) (13-1)

Their matrix elements are therefore (omitting the index a)

(jm u' im) = (2j + l)' (jm kq jm') =j q k ) (13-2)

In virtue of the Tigner-Eckart theorem, the matrix elements of a tensor operator T1(k)

in spherical basis between the same states are proportional to those of u(k), the constant

of proportionality being the reduced matrix clement of T(k)

(Om 'I T (k) I im) = (I II T Jk) 11i) (jm'iu(k) jmn) (13-3)

For a given basis, characterized by a certain value of j, the operators u(k) for k > 2j
q

are identically zero, since the corresponding coupling coefficients vanish.

According to Eq. (13-2) the non-vanishing matrix elements of u(k) are along the q-th
q

parallel to the main diagonal. Moreover, for a given value of q, the matrix elements of

operators with different k values satisfy the following orthogonality relations

I (j, m+q I u(1) Ijm) (j, m+qu' I jm) - 8(kk) (13-4)I q q 2k+1

13-1
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In order to illustrate these facts, we reproduce in Table 13-1 the matrices for the

non-vanishing u•) operators in the space of the basis functions for j 1.

TABLE 13-1

U 0)
0

0 1 0
0 0 1Li- o 0 0 L 0

0-1 0 1 0 0 00 0

0 o o- 1 1 0 o

0 0 0 0 0 -1 01 0

0 01 0 -1 0 1 00 0 ()0 00 0
0 00 ~,~0 0 1 0T 0-20 1 0i 0 00 0
0 00 2 0 00 6 0 01 20 -I0 10 0

Any (3 x 3) matrix may be expressed as a linear combination of these nine matrices.

It may also be noticed that the Jjm) for j = 1 are eigenfunctions of up°), uMj', and u(2)

which are therefore a complete set of commuting operators in that particular space.

The matrix elements of u(k) for a given q may be considered as the components of a

vectqr in 2j + 1 - Jqj dimensions. The number of such vectors corresponding to the several

possible values of k is also 2j + 1 - Iqi, and according to Eq. (13-4) these vectors are
orthogonal. They will be also orthonormal if we choose to consider the operators

/2Jk + I u(k) _ v("), which in this as well as other respects are more convenient than the

u(k). Any matrix Aq in 2j + 1 dimensions containing elements only along the q-th parallel
to the main diagonal may be expressed in tems of the above vectors.
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In the sub-space of the 2j + 1 basis functions associated with a given value of j, the

(2j + 1)2 operators u(hs p for k 2 form a complete set. Within that sub-space any operator T
may be expanded in terms of the basic set

T j = a u• (13.5)
k=0 q=-k

The rmatrix elements of T are given by

(j, rn+qTlijm)r ) aq (j, m+qI u(k) HIrm) (13-6)

The coefficients akq are easily obtained by multiplying both sides by (j,rm+qlU(k )ira),

adding over all m's and introducing on the right hand side the orthogonality relations ',13-4).

One obtains,

k - (2 k +Y) I (j, m+qlu(k)ljm)(j, m+qITIjm) (13-7)kq m MI
In general, the coefficients akq need not be independent of q. If they are, tihe operator

T is a sum of irreducible tensor operators T(k) and the coefficients are the corresponding

reduced matrix elements. The operators we shall have to consider are usually of this type.

RELATION BETWEEN THE u(k) AND TILE ANGULAR MOMENTUM OPERATORS

The operators u(P) act on the basis functions as follows

u(Ck) I jm) = 1J, m i q) (2j i 1)"'V (jr kq I J, m+ q) (13-8)

This immediately suggests that they should be expressible in terms of the angular momentum

operators J4 , J_, J z and J2. In particular, they may be conveniently written as a product of

the q-th power of the m-raising operator J+ (or J_ for negative q) and another operator diagonal

in this representation, which should therefore be a function of only J z, j2, and the unit operator.

We shall write (for q >. 0)

I u) = (j+)q fk q (J, J 1) (13-9)

I
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The operator (J+)q acts on the basis functions according to the well known expression

( J r) IJ, m.iq) F(j -m)!(i+m+q)! 1 /

I (j-m-q) !(j+m)!

(13-10)

J, m+q) f + (j, m, q)

while the cigenvalues of the diagonal operator fk q (J 2 , ) art, given by the same function

fkq of the eigenvalues of Jz and j2,

fkq (j0, J X) =n) I ir) fk q (j (j 1), m) (13-11)

The explicit form of fkq is most easily determined from the known expression for the

coupling coefficients and the'equation obtained by introducing Eqs. (13-9), (13-10) and

(13-11) into (13-8), that is

S(j mnkq Ij, m+q) = f,(j,m,q) (kq 0 (j+ 1), m) (13-12)

The expression for the coupling coefficients may be written in the form

'- (jk q , m+ q) -

(j -M)! (14m-,q)l_ / (2j -k)! (k + ()! (k -q) 1 2(1 -3
(j - m-q)! (I i-m)! (2j vk+t)! kl kI 1-3

xX (_l),"k-• : (k k A (i+m)l (j-m-q)l

A -q- (j + m-A)I (j-m-k #-,)I

The first factor on the right hand side may be recognized as f+, the remaining ones

correspond to fkq. The summation is a polynomial inj. and rn (of degree k-q) which can be

rewritten in terms of j(j +1) and m. These may then be replaced by j2 and J respectively

to yield the expression for the operator fkq (j 2, j ).I

The expressions for the uPC) operators for k = 0, 1, and 2 are given in Table 13-2.

Actually, it is more convenient for this purpose to express the operators u(k) in a form
slightly different from Eq. (13-9), namely

U(k)
q - (J+)q Fhg(J 2 , J ) (2jk)!/(2j +k + 1)q (13-14)
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TABLE 13-2

j UNIT TENSOR OPERATORS. SPHERICAL BASIS

u(k) - (j+) Fkq(J 2,J.) (2j-k)!l/(2j+k+ 1) 1

k q (j .)q Fkq(J 2,j )

0 0 1

1 F2~J

1 0 2Jz

22
S2 F6 j+'

I -T J+ (2j .+ 1)

2 0 2(3j' - J 2 )

-F1 6J-_2j(2 .- 1)

-2 T6j

The operators u) for k ,< 6 are given in Table 13-3.0

TABLE 13-3
UNIT TENSOR OPERATORS P) SPHERICAL. BASIS

0

u k)
k Fko(J 2, J) /'(2-.k)!](2j+k+ 1)!

k Fko (J 2 , J )

0 1

S1 2J .

2 2(3j' - j2)

4• 2 23 4J,(5J 3 3j2 + 1)

4 2(35J 2 - 30J 2 J 2 + 3J + 25J2 6J2)

4J,(63J - 70J 2 j 2 + 15j 4 + 105J 2 - 50J 2 + 12)

64(231 j 6 -315 j 0j _5j+3 4 25j 2J12 +40 j4+9 26j
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RELATION WITH TIME y1(L)

The relation between other operators in spherical basis and the P) may be estabished

along similar lines. According to Eq. (13-3) the matrix elements of tensor operators between

basis functions of the same j may be expressed in terms of those for the u . .

Thus, for example, for the matrix elements of the operators corresponding to the

spherical harmonics, we have

( Y, (j.) A -(I) y(L)

-M) I j,,) (jm Iu[ I jm)(jll ( L j) (13-15)

where the reduced matrix elements are given by

(iV.() Ii -) 2LI(2j + 1) L(13-16)

It may he pointed out, however, that the correspondence between the y(L) and the

u(jL) is of a more restricted nature than in the case of the angular momentum operators.

On the one hand, the y(L) have non-zero matrix elements between states with different

values (satisfying the triangular condition), while thi umL) do not, by definition. Thus,

although one may write

y(L) = u(L) (j 11 y(L) 11) (13-17)

this proportionality relation is only valid within sub-spaces with fixed j-values. On the other

hand, the proportionality factors ( II yCL) fl j) also vanish for L odd (assuming j integral),

and therefore the u(L) cannot always be expressed in terms of the yVL), unlike the case of

the angular momentum operators.
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14. THE BASIS FUNCTIONS FOR N-ELECTRON SYSTEMS

THE INDEPENDENT PARTICLE REPRESENTATION

ANTISYMMETRIC BASIS FUNCTIONS

The simplest type of basis functions in the N-electron case are the products of N one-
electron basis functions. These may be considered as the eigenfunctions of a Hamiltonian
of the form

Nti - Z ItI (14.1)

which corresponds to a system of non-interactinip particles. The one-electron basis functions

Ja)i for the i-th electron are the eigenfunctions of tII

tIii a)i Ia).i - (14-2)

while the N-electron product functions satisfy

11 1a), lb), . . . . lq)N la)l Ib) 2 .... lq)N (Ea+Eb+"4E q) (14-3)

and the energies are additive, as it corresponds to a system of non-interacting particles.

Since the Hamiltonian is a symmetric function of the coordinates of the electrons, it
follows that the NI product functions obtained from la) 1b)2... - q)N by permutation of
electron indices all correspond to the same value of the energy, E - Ea + Eb. .. + Eq*
This degeneracy does not occur in a physical N-electron system, since the Exclusion
Principle asserts that the only states which are allowed are those whose eigenfunctions
are antisymmetric under a permutation of any two electrons.

For every set of N different one-electron basis functions there is only one antisymmetric
linear combination of product functions, namely the Slater determinant

la)1 i1 2 ..... la)N

lab. .. q] lb), lb)2 ..... Jb)N (14-4)

...... o 4 ...
1q 1.e eq)2 co q.l N
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We shall designate the N-electron product functions in the form

Iab ... q) l 1a), lb) 2 ... q)N (14-5)

and use the notation lab ... qI for the corresponding determinantal wave functions.

The phases of tile N-electron product functions are usually taken to be unity, irre-

spective of the order of their factors. When forming the antisymmetric linear combination of

these, lab ... q], the new overall phase factor is chosen so that a particular product function

lab . .. q) has the coefficient +1 in the expansion of the determinant if the one-electron labels
appear in some standard order, which has to be specified.

The previous equation (14-4) may also be written in the form

Lab ... qI -A N Iab ... q) (14.6)

where AN is the antisymmetrizing operator

AN -- I (-1 )P P (14-7)

the sum extending over all the operations P of the permutation group of N particles, and p

is the parity of the corresponding permutation P.

The projection operator p(A) for the antisymmetric representation is, according to
Eq. (4-14),

p(A)• I• (- I), P (48
N N! ,

and therefore differs from AN by a factor ý/-l

A N = vrNlP(A) (14-9)
N

Unlike P(A), the operator AN is not idempotent, since

A- = Vr-I AN (14-10)
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MATRIX ELEMENTS OF SYMMETRIC OPERATORS

One-particle Symmetric Operators

The types of operators we shall have to consider in the several-electron problem are

symmetric with respect to any interchange of electron indices. According to Eq. (3-9) these
operators commute with any permutation P and therefore with the antisymmetrizing operator.

We shall first consider operators of the form

NF = - f. (14-11)

i

where the individual fi operate only on the basis functions of the i-th electron. The f

operating on a particular product function lab ... q) give

fi la)1  Ib) 2 .. I. c)i ... q)N = , 1a), la ) 2  . .- . Ic ')i ... Iq)N (c 'lflc) (14.12)
C

or

filab ... c ... q)= Z lab ... c"... q )(c'lflc) (14-13)
C

where the summation extends to all the one-electron basis functions. The coefficients

(c'lflc) are numbers independent of electron indices.

We can repeat the process for all the fi, add the results and operate with AN on both

sides. Since AN and F commute, we can write the left-hand side in the form

AN (% fi) lab ... q)= F AN lab ... q),= F lab... q] (14-14)

I and therefore

F [nb . . . . q] [I b ... c q. q (a'Ifla) +

+ t Lab ... c'... q] (c'lflc) + ... + L, tab ... q ... q'1 (q'lflq) (14-15)
c q

According to this expansion, a symmetric operator of type F connects only states 0i

I and 0b' which differ at most in one of the labels of the one-electron basis functions. In
general, the determinants tab ... c'... q] will not have their labels in the standard order

I and are therefore related to the corresponding standard determinants Vy" as follows

14-3
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= (- 1 )p lab ... c'... q1 (14-16)

where p is the parity of the permutation which transforms one into the other.

If the states V; and tA'differ in one label, c'ý c, the matrix elements are given by

(•'ll$ =(-I)P (Lah ... c . . q] JIFl[ab ... c . .q)=(-1)p (ce'Ifle) (14-17)

The diagonal elements are

(0 IFFq,) n (alfla) + .. i. (cjflc) i ... 4 (qlflq) (tjflt) (14-18)
t~ft

since each of the summations on the right in (14-15), for ap= a,... c'- c, ... , q'(I q,

respectively, contributes to the coefficient of [ab ... c .q].

Two-particle Symmetric Operators

Another important class of symmetric operators of interest in atomic problems are of

the form

N
G - % gii (14-19)

i>j

where the goi operate only on the basis functions of the i-th and j-th electrons.

Following the same argument as in the case of F - fl, we arrive at the expression

G ab ... c ... e...q]=

-- % [a 'b .. c ... e .. q] (a 'b "Iglab) + .. .

+ tab ... cp... eA ... q] (c'e'lglce) 4 .. (14-20)
c le

and therefore a symmetric operator of type G connects only states 0/ and 0' which differ at

most in two of the labels of their one electron basis functions. The same remarks as before

apply in reference to the relative phases of the t'is and the determinants on the right-hand

side.
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In every summation in 'Eq. (14-20) both indices assume all possible values, and for

every pair of values c 'and e" there are two terms for which the determinants are not inde-

pendent, namely

tab .. c'...e'...ql (c'e'Iglce) t Lab...e ... c'...q1(e'c'Iglce) (14-21)

Since one determinant is the negative of the other, and for c'= eo they vanish, we may

replace the summations in Eq. (14-20) by sums over pairs c'> e' in the form

G Lab...c ... e ... q-

S[a'b'... c ,.. e .. q] I (a'b'Jglab) - (ba 'Iglab) l +

Y L [ab ... c'... e'... q] I (c'e'lglce) - (e'c'Iglce) I + ... (14-22)
c'> e

If the states 0 and qk'differ in two labels, c/ c, and e'j e, the matrix elements of

G are given by

($'F1¢ -(-L)r' ([ab ... co... e'... q] JGI[ab ... c ... e s.. q])

1)P I (c'e'tglce) - (e'c'Cgjce) l (14-23)

If it, and Vi' differ only o.* one label, co7 c, every sum over pairs c'> a, c' b', ... ,

c'> q' contributes to the coefficient of lab ... c'... q] when a'- a, h' = b, ... , q'= q,
respectively. The matrix elements are therefore

(¢,'1GIV,) (.(-1)P (Lab ... c'... 1] IGI Lab . .. c ... q1)

- (-l)P • I (c't IgIct) - (tc'lglct) l (14-24)
t~ a

If t, 0,', all the summations contribute to the coefficient of lab ... q] when the

primed indices are equal to a, b, ... , q, and the diagonal elements are given by the double

sum

(' IGI ') 1 - (kt IgI kt) - (tk I g kt) 1, (14-25)
k>t= a

I



T11E CENTRAL-FIELD AND STRONG-FIELD RUI'RESENTATIONS

Within the independent-particle scheme the one-electron basis functions may be chosen

in different ways, depending on the particular form of the one-electron Hamiltonian H1, of

which the la)i are the eigenfunctions.

Whlhen considering free atoms or ions these basis functions are usually chosen to be the

eigenfunctions of a one-electron Hlamiltonian of the form

Ili = I pp? + u(ri) (14-26)
2 L

In this "central-field" scheme, the one-electron basis functions are characterized by

the familiar quantum numbers n -t m,, m ,. The eigenvalues of such a Hamiltonian depend

only on the quantum numbers n and , since III is independent of the spin or spatial orien-

tation. It therefore has a high degree of degeneracy, since all the states of the same con-

figuration have the same energy.

The so-called "strong-field" scheme is often used when considering ions in crystal

lattices. In this case the one-electron basis functions are eigenfunctions of a one-electron

Hamiltonian of the type

tI; " fA(0 ;, O) (14-27)

which is a symmetric function under the operations of the pertinent crystallographic point

group.

In the central-field scheme our choice of standard order for the determinantal basis

functions is that where the N sets of quantum numbers n! M I of the one-electron functions

are listed in dictionary order according to increasing values of n and t, but decreasing values

of m. and m, . This differs from the standard order in Condon and Shortley9 , which is really

according to n Ym, m , so that in their case the ordering by mI values precedes the ordering

by inm values.

Each set of nt values labels a shell. The list of all sets of n t values, each with a

superscript indicating the number of electrons in the shell, specifies a configuration. The

states of a configuration are described by listing also the m . and mi values of the electrons

in the incomplete shells. For these, the several in f values corresponding to m. . Y2 are

given inside parenthesis labelled by an upper + sign, then the mI for m, -V - in a
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parenthiesis hih elied by a minus sign. For example, a state of a conlf iguration of Cr++ is

1s 2 2 ,2 2s p6 3s 2 3p 6 3d 4  [21, -11' [- 1]-

I In order to simplify the notation and use only the minimum necessary number of labels,

it is customary to retain-only those which are relevant to the problem under consideration.

"* Thus, for example, when considering only staten of the Crl+ ion in the given configuration,
it is only necessary to specify the ni1 i values of the four d-electrons in the incomplete
shell, and those will be written simply in the form [21, -11+ [-1]-, [2101+[-21, etc.

In later Sections we shall use a still simpler notation. If only states where all the

im,, values are +V are considered, we shall write a symbol [2101+ as [2101. Similarly a

symbol like [21, -1] [-I] will be replaced by [21T1IT.

II
I
I
I
I
I
I
I
I
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15. THE BASIS FUNCTIONS FOR N-ELECTRON SYSTEMS

THE LS-COUPLING SCHEMEI
The independent-particle Hamiltonian previously considered is not a good approxi-

mation to the true Hamiltonian of an atomic system of several electrons. It does not include

terms which make a significant contribution to the energy of the system. If the terms cor-

responding to the Coulomb repulsion of the electrons and the spin-orbit coupling energy are

included, the Hamiltonian for a free atom or ion takes the form

N (1 2 Z2 N e 2

H . + 6(ri) + - (15-1)
I ri i > j rij

It is found that in practice this constitutes a rather good approximation to the true

Hlamiltonian. Experimental results also show that the spin-orbit coupling energy is usually

small compared to the other terms.

If the spin-orbit coupling terms are excluded, the resultant Hamiltonian is spin-

independent, and is therefore invariant under rotations in the coordinate space as well as

in the spin space. It is therefore convenient to choose a system of N-electron basis functions

class.'ied according to the different irreducible representations of these rotation groups.

This is equivalent to a classification according to the different eigenvalues of the com-

muting operators L 2,S2 ,L,, and S,. The vector operators L and S correspond to the total
orbital and spin angular momentum, respectively, and are given by

L = I + 12 + ... + IN1 (15-2)

S " st+ + ... + sN

where the Ii and si are the corresponding operators for the individual electrons. The operators

IL 2 and S2 are

L2 = (L.L) = - (L+L_ + LL+) + L2
2 z

(15-3)

S2 = (S.S) = _1 (S+SS_ + SS+) + S2I 2
l 15-1
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The basis functions in this representation are characterized by the corresponding

quantum numbers and written in the form I aSL MSML). The symbol a stands for all the rest

of the indices or quantum numbers necessary to specify the state, such as the configuration,

etc.

According to the properties of symmetric operators, Eq. (3-19), in this representation

the Hamiltonian of the free ion (with no spin-orbit terms) has zero matrix elements between

basis functions which differ in any nf the quantum numbers SI. MsML.

CONFIGURATIONS OF EQUIVALENT ELECTRONS

When considering the configurations of several equivalent electrons it is often found

that there are several states with the same set of quantum numbers SL MSML for a given

configuration. The simplest case when this occurs is for the d 3 configuration, to which two
2D states belong. According to the arguments given in Section 8, it is convenient to classify

these states according to the eigenvalues of other operator or set of operators which com-

mute with the previous L 2, SLZ, and S,.

For the configurations of several d-electrons, (tC 2), the appropriate operator is

q(,• 3[Ot.2 3Y2
G(R5) -3 [UM1 ' + 7[U( 3 12 (15-4)

For the configurations of several f-electrons, ( ' = 3) there are two operators of

that sort

4(G2) 30U( )] 2 + lU(')12  (15-5)

4(R7) - 3[U(')] 2 + 7[U(3)] 2 + 105U(')] 2  (15-6)

The U(k) are the N-electron operators corresponding to the unit operators u(k)

discussed in Section 13,

= • u(kki) (15-7)

and may be expressed in terms of the angular momentum operators, as previously indicated.

In particular, the operator U(t) is proportional to the total orbital angular momentum operator L.
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In the same way that a classification of the basis functions according to the eigen-
values of L 2, or [U(1)] 2, is equivalent to that according to the different irreducible repre-
sentations of the rotation group in three dimensions, R3, the classification accoiding to the
eigenvalues of q(R,) or Q(R 7 ) is equivalent to that according to the irreducible represen-
tations of the groups designated as R 5 and R7 , respectively. These are rotation groups in
the space of the 2-F, i I basis functions for d- or t-electrons. The group designated as G2
is a subgroup of R7. The three-dimensional rotation group R 3 is a subgroup of all of these.
We shall discuss these questions at greater length in the Appendix. At this point we shall
only indicate the basic facts which are relevant to the forthcoming discussions.

The irreducible representations of R5 are characterized by two integers At, > )2
and symbolized by (A1\X 2). The corresponding eigenvalues of the operator q(R 5) are a
function of X, and X2

-ql(,,X2) - [X.(A, + 3) + X2(X2+ 1)1 (15-8)

The irreducible representations of R5 which are of interest in the classification of the states
of the dN configurations are given in Table 15-2. This also shows the reduction of these
representations into those of R Y

The irreducible representations of the group R 7 are characterized by three integers

Xt >/ Xt2 >, X and symbolized by (XhX2X 3). The eigenvalues of the operator G(R 7) for
the eigenfunctions of the representation (Ax?2x 3) are

',7 (X.lA2,3) - -L-I [A 1('X. + 5) + X2(X2 + 3) + ka(X3 + 1)] (15-9)

The representations of the subgroup G 2 are characterized by two integers p, > AD
and also symbolized by (M1 ,t 2). The eigenvalues of the operator Q (G 2) for the basis functions

of the (Lt1 2) representation are given by

2T IOi(/I + 5) + 2(2+ 4) + (15-10)

The irreducible representations of R 7 and G 2 which are of interest in the classi-

fication of the states of the f0 configurations are given in Tables 15-3 to 15-7. These

also show the reduction of the irreducible representations of R7 into those of G 2, and
these in turn into representations of R'

I
I 15-3
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The IgSLMSML) Functions

The vector-coupling Methods described in previous Sections require some modifi-

cations when applied to the determination of the N-electron basis functions in LS-coupling,

on account of the antisyinmetry requirements. There are essentially two methods of approach.

One starts with antisymmetric N-electron basis functions in the independent-particle repre-

sentation, and determines linear combinations of these which are ISL MSML) basis functions.

The other approach starts constructing IS L MS•ML) basis functions by use of the vector

coupling methods and then the appropriate linear combinations of these which are anti-

symmetric for interchange of electrons. Both methods have their own virtues and disadvan-

tages. The first involves simpler types of arguments and we shall consider it in the present

Section.

We shall describe the method for n 'tN configurations of equivalent electrons. The

extension to those consisting of two or more incomplete shells presents no additional dif-

ficulties. In its simplest form, the method was used by Gray and Wills 1 0 . We shall also

show how it can be modified and extended to obtain ISL MSML) basis functions which are

also eigenfunctions of the operators G(R 21.,t) and q(G 2), which we shall call IgSL MSML)

In this method the eigenfunction Ig SL MSML) for the highest Ms and Ml, namely

MS - S and ML - L for each state is found by orthogonality considerations. The eigenfunc-

tions for the other possible values of M. and ML may then be found by repeated application

of -ie lowering operators S_ and L_.

In order to form the IgSL MsMO) linear combinations we shall need to know the

effect of operating with S_,L_ and )(k) on the determinantal basis functions. Since all

these operators are of the type F=Y. fi, the results are given by Eq. (14-15).
i

For simplicity, the basis functions of the previous Section will be written in the

form

lmlm1.12.. mirI m/r+ I... r (15-11)

where the mi values listed on the left of the vertical bar correspond to m. V/2, those on

the right to m.-- . If they all correspond to m. = Y they will be written as

(min ml ... Inl (15-12)

with r = N.
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The application of L_ to one of these is given by

L_[mj ...rin, ... .ml N [= , ... m 1  I...miN] i- +

Similarly, for S_ we obtain 
(51

S_ [in 1 I...m, ... I...m N] N I,, [ 1 .... Inz. Ml... () (15-14)
- iN Mli.

For the operators U (k), according to Eq. (13-8) we obtain the following resultq

()('tmlikq I, /+q

U (k) [in 1  . .in, ... I ... min , ] m j ...m 1+ q . . i. ,m 1 (....t i Itmi,+ q)

q 1I N I iN

(15-15)

As indicated previously, p is the number of interchanges necessary to bring the re-
sulting ino + q value to its place, so that in the final determinant all the mI values be ordered

in descending order. If the new mi + q value is the same as any of the other in, values for

the same in., the corresponding determinantal function vanishes.

In the actual performance of the operations it is advantageous to use some diagrams

where the matrix elements on the right- hand side of Eqs. (15-13) and (15-15) are shown con-

necting the corresponding ni values. This allows the effect of an operator on the basis func-

tions to be determined by inspection.

For example, when considering configurations of equivalent d-electrons, (t - 2), we

have the following diagram for L

(mj- IL_Iml) 2/

With the help) of this diagram, the effect of L_ on a determinant such as [20111 is easily found

to be

L_[20111 = T6 120101 + F6 [21111 + 2[10111 (15-17)

i 15-5
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Similarly, the corresponding diagrams for the operators U -1 u--2 and U - are

-MI-

a(ml- lIU( 3 Im1) (15-1T38) F

a~mi2IU~~ int ~,<C'tI. 1~c11~/i-(15-19)

(15-20)

a(ml-31U~ -3 11)/

All the matrix elements have been multiplied by the constant a = 5 to avoid

denominators. A constant factor may always be omitted, since normalization is easily ac-

complished. For example, the operation of U() oi (21101 is

U() (21101 ] -5 I - [21121 1 0[21101 1 [011011

a
(15-2 1)

-E5 I - (2t 1"2-1 10 [l1O1
a

The effect of S_ on a determninantal basis function requires only to consider the

permutation factor (- 1)P. Thus, for example,

Sj[21"1 = [210111 - [21TfO1 + [20TIl - [10f12] (15-22)

The determinantal basis lunctions are already eigenfunctions of L, and S. with

eigenvalues given by

Is
ML =>,mli

Ms r -NI
2
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In the process of determining the Ig SL MSML) functions according to the present

method, it is convenient, though not always necessary, to obtain first those for the highest
value oi the total spin S, and proceed to those for S z N/2 - 1,..., 1/2 or 0, successively.

It is only necessary for most purposes to determine one function for every set of values

g S L, and the simplest one is usually the function Ig S L S L) with the highest values of Ms
and ML. The remaining ones may be obtained by repeated operation with S_ and L_.

For a given value of S, there is only one determinant with M, - S and largest ML,
and this must correspond to the function ISLtISLIl) of the state with the highest L for that

multiplicity.

Operating with L_ on this function one obtains the function ISLIHS,LH - 1). If this

is a linear combination of n determinants, the remaining n - 1 linear combinations of these,

orthogonal to the previous one, must correspond to states with L - Lu - 1. Those belonging

to states of higher total spin may be assumed to he known from a previous stage. The rest

are IS,L It - 1, S, L11 - 1) functions. It there is more than one, they can be determined so

that they be also eigenfunctions of the (4 operators of Eqs. (15.4) to (15-6). The appropriate

orthogonality conditions are described below.

The operator L_ may be applied to these lunctions with ML H - 1 and the whole

process repeated until finally the functions with the lowest value of L are obtained. It should

be pointed out that it is not necessary to operate with L- on the actual linear combinations

of determinants obtained at a given stage, but only on the determinants themselves, since

this provides equivalent, but simpler, orthogonality relations to be satisfied by the new

ISLMsML) functions to he determined at the next stage.

The additional orthogonality conditions necessary to obtain ISL MSML) functions

which are also eigenfunctions of the q operators are obtained by use of the J(k) operators.
q

We shall consider first the case of the dN configurations. The corresponding operator i(R,)

is

C(R5) - 3[U(t)] 2 + 7[U(3)12 (15-21)

Since U(1) is proportional to L, in a representation where L 2 and Q(R 5) are diagonal
the operator iS(j)]2 must also be diagonal. Accordingly, the operators UM acting on a

function that belongs to a given irreducible representation (X 1 1h2) of R 5 can only give func-
tions which belong to the same irreducible representation, and which are therefore orthogonal

to all those belonging to others. A familiar analog is afforded by L+, L , and L_, which
operate on IL ML) eigenfunctions to give only others with the same L value.

I
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In the case of the fN configurations, the two operators to be considered are

4(G2) 310"1' 2 1 i1U0(5)12

and (15-22)
q(R 7) = q(G 2) + 710(,)]2

The same arguments used in the case of R5 show that in a representation where
L 2, G(G 2) and Q(R 7) are diagonal, all three operators [U(l)1 2, [U(3)] 2, and [U(')] 2 are also
diagonal. The operators UM connect only functions belonging to the same irreducible

q
representation (G1YL 2 ) of G 2, while the operators UM ctJq connect only functions of the same

irreducible representation (XIX 29 3) or R 7.

The process of determining the eigenfunctions of the L2,S2, and q operators is
facilitated by the knowledge of the number of states to be expected and their classification
according to the eigenvalues of these operators (or the irreducible representations of the
corresponding groups). This knowledge can be gaincd by group-theoretical considerations. 1 1' 12

This classification for the dN and fN configurations is given in Tables 15-2 to 15-7.

THE HALF-SHELL RULE

There is a very important rule which allows the determination of Ig S L Ms ME) eigen-
functions for many states of configurations of several electrons from those with a smaller
number of electrons and vice versa. The considerable simplification that it introduces re-

duces the labor involved by approximately a half.

Let us consider two determinantal basis functions for a given configuration of equiv-
alent electrons which differ only on one of the m, values

A -[my...m %...m1 l ... m1 ] A'--m..."mj,"l... rI..."m (15-23)

Next consider the determinants of the configuration of N' electrons (N'- 2t+ 1+ N-20
obtained from the previous ones by replacing holes in the m" = Y2 half-shell by electrons with
the negatives of their corresponding ml values. Thus, for example, if we take the above
determinants to be t3211] and (30111 of the f 3 configuration, and represent them schematically

in the form

15-8
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A 3 A1 (15-24)

I the associated determinants for f 6 obtained by the above rule are [3210111] and 13211211],

respectively

-2 1 3 2 1 1 1 11 12 1 125
A I A '1312 I1 I 1 1 (15-25)

I It is easily seen that the determinant of N'electrons associated to A will contain

the quantum number -in , , the one associated to A 'will contain -mI., while the rest of

tile ml will be common to both.

The matrix element of a tensor operator Uck) (with q ý 0) between the determinantal

basis functions A and A' is, according to Eq. (14-17)

J(A'IU(k) IA) = (1 I)p ( t,ml u (k) Intm ) (15-26)

The corresponding matrix element between the "half-shell associate" determinants,

A and ý', is

XUq JA) = (- 1(k)It -M, (15-27)

SIt is easily proved that the parities p and f of the pertinent permutations satisfy

F-= p + IqI - 1 for q ý 0; 'F = p for q - 0 (15-28)

I The symmetry relations between the matrix elements of the u(k) operators arte

(',-mju (u) I M,-m') -- k- ,-(tm ,I n) (15-29)

From al I these considerations, it follows that

(-' tu(kqA) , ( A 1)k' IuAk. IA) (15-30)

I
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This relation is also valid without modification for q -, 0 in the case of k odd,. since

X (.tmlu (k) It~m) = 0, for k odd(13)
m 0

All previous cornsiderations used in the determination of the Ig SL, MSML) functions,
with the exception of those concerning the spin, make use of the operators UM~1 , U(3 ) and
U(51, which act in identical fashion on "half-shell associate" determinants. q

q

It follows that if a linear combination of determinants belongs to given irreducible
representations of R 3 and R5 (or R3, G2 and R7), the corresponding linear combination of
the "half-shell associate" determinants also belongs to the same representations. It must
be noticed, however, that they correspond to different S and MS eigenvalues.

Thus, for example, if the JgSL MSML) basic functions for f 2 are known, the cor-
responding functions belonging to the representations (000) (200) and (110) for other con-
figurations f5, f 4, f6, f7 may he obtained by the "half-shell rule" and by appropriate use

of the S... operator. One example of the use of this rule is given below for the P3 configuration
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Example: Th. d3 Con~rifgttion

We shall illustrate the method by obtaining one basis function, M1, = L and Ms - S,

for each of the states of the d3 configuration.

The basis function for the quartet states 4 F and 4 P may be obtained from those for

the triplet states of d2 by use of the "half-shell rule",

d 2  3F - [211 3 p P I J [211 -i r3 D0] 1/V/5" (15-32)

d3  4 F- " [21(1 4 P -1 2 [ 20-1 - 1 [2121 I/VT (15-33)

For the doublet states, we start with the one with the highest L, namely the 2 H. There

is only one wave function with M= 5, and this must correspond to 211

21, -- 21121 (15-34)

If the M-lowering operator is applied to this, we obtain a linear combination of two

functions [2111] and [2012], which corresponds to 211, Mj. =-4.

The other independent linear combination, orthogonal to the previous one must corre-

spond to a new state, namely the G. The process is facilitated by adopting a scheme of the

type

[2111) [20121

SL_21121 2 V " (15-35)

2G VT -2

The first row is actually the matrix of the L_ operator. The last row gives the co-

efficients of the function corresponding to the 2G state. If this is normalized, we can write

it in the form

2C,= I \ [21111 - F2 L2012] I / 155 (15-36)

We may proceed in the same form now, and apply L_ to the previous functions. Since

we are not interested in the ML = 3 functions for the 2H and 2G states, we may apply L_ to

the functions [2111] and [2012] rather than to the linear combinations corresponding to the!
I 15-11
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ML = 4 functions of the 211 and 2G states. This not only avoids a matrix multiplication, but

also simplifies the determination of the basis functions for the new states making their

appearance at this point. The new functions must be orthogonal to any linear combination

of the ML = 3 functions for 2 H and 2 G, and therefore to L [21111 and L- [20121. The matrix

of L- between determinantal basis functions may be obtained by inspection by means of the

diagrams (15-16).

The calculation scheme for ML - 3 is

[2110) [20111 [2TI21 [10121

L- [21111 \/ V 0 0

L [20121 0 2 V/6 2 (15-37)
4 F, 1 -1 0 1

2F 1 -1 x!• -2

The two first rows constitute the matrix of L-. There are now four basis functions for

ML = 3 and therefore two new basis functions for F states. One of these must be the Ms -V
function of the 4 F state, which may be obtained from the already known Ms - 3/2 function

[210] as S [2101, and is given in the third row.

The remaining function corresponds to the new 2 F state. Its coefficients are given in

the last row, which is orthogonal to all the others.

We shall carry the process one step further and work out the scheme for the ML c- 2

functions. This is of interest, because in this case we obtain two states of the same type,

namely two 2D states, and we shall show how they can be chosen to belong to different

representations of the group R 5 .

The calculation scheme for the NIL = 2 functions is

[21111 [20101 [21111 [10111 t2ýl21 [1t112

L.. [21101 V /" 0 0 0 0

L- [20111 0 4r VW 2 0 0

L- [2"121 0 0 2 0 2 2 (15-38)

L_ [1012] 0 0 0 2 0
2D(1o) 1 -1 1 0 -1 0
2D( 2 1) -3 3 1 -2V• -5 4

15-12
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After the matrix elements of L_ have been determined, the 2D1(10) function may be

"found in essentially two different ways which we shall sketch briefly.

The first method makes use of the fact that the 5l)(10) function of the d4 config-

uration also belongs to the (10) representation of R 5 . The 5 D(10) function for ML ý 2,

I s - 2, is simply [2101]. The function for Ms ml is easily obtained as

S [21011 - [2101111- [21110] [201Ill - [101121 (15-39)

The 2D( 10 ) function for d3 is obtained from this by means of the "half-shell rule".

Another method is based on the fact that the U(3) operators connect only states of

the same irreducible representation of R 5 . Since the determinantal basis function for M >,3

do not form functions of the (10) representation, the operators 1() operating on them will

always yield functions orthogonal to those of the 2D( 1 0 ) state. We can take, for example

u_3 [21121 ] N I [211T] t24121 - 11T121 1 (15-40)

The coefficients for the 21( 10) function may then be determined by this additional

orthogonality condition.

Finally, the function for the 21(21) state is obtained by making it orthogonal to that

for 2D(10 ) and the L_ [2110], etc.

1
!
I
I
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TABLE 15-1

STATES OF THE pn CONFIGURATIONS

N 2S+1 L

2 p

2 3 P

1 S D

3 4 S

2 PD

i
i'

15-14 !
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TABLE 15-2

I STATES OF THE dn CONFIGURATIONS

I 25+1 R5 R3

1 2 (10) D

2 3 (11) P F

1 (00) S
(20) D G

3 4 (11) P F

2 (10) D
(21) PDFGH

4 5 (10) D

1 3 (11) P F
(21) PDFGH

S(00) S

(20) D G
(22) S DFG I

I
5 6 (00) 5

4 (11) P F
(20) D G

I 2 (10) D
(21) PDFGH

I (22) S DFG I

i 15-15[ I



TABLE 15-3a

STATES OF THE f2 CONFIGURATION

N 2S+1 R7 G2 R3

2 3 11U (10) F
(11) P H

1 000 (00) 5

200 (20) D G I

TABLE 15-3b

STATES OF THE f3 CONFIGURATION

N 25+1 R7 G2 R3

3 4 111 (00) s
(10) F
(20) D G I

2 100 (10) F

210 (11) P H
(2O) D G I
(21) DFGH KL

15-16
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TABLE 15-4

f4
STATES OF THE f CONFIGURATION

N 2S+1 R7 G2 R3

4 5 111 (00) S
(101 F
(20) D G I

3 110 (10) F
(11) p H

211 (10) F
(11) P H
(20) D G I
(21) DFGH KL
(30) P FGHIK M

1 1 000 (00) S

200 (20) D G I

220 (20) D G I
(21) DFGH KL

(22) 5 D GHI L N

I
I
I
I

1 15-17
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TABLE 15-5

STATES OF THE f 5  CONFIGURATION

N 2S+1 R7 G2 R3

5 6 110 (10) F
(11) P H

4 ill (00) 5
(10) F
(20) D G I

211 (10) F
(1i) P H
(20) D G I
(21) DFGH KL
(30) P FGH.fK M

2 1o0 (10) F

210 (11) P H
(20) D G 1
(21) DFGH KL

221 (10) F
(11) P H
(20) D G I
(21) DFGH KL
(30) P FGHIK M
(31) PDFGHIKLMNO

F HIK

15-18
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'TABLE 15-6

STATES OF THE f CONFIGURATION,

N 25+1 R7 G2 R3

6 7 100 (10) F

5 111 (00) S
(10) F
(20) D G I

210 (11) P H
(20] D G I
(21) DFGH KL

3 110 (10) F
(11) P H

211 (10) F
(11) P H
(20) D G I
(21) DFGH KL
(30) P FGHIK M

221 (10) F
(11) P H
(20) D G I
(21) DFGH KL
(30) P FGHIK M
(31) PDFGHIKLMNO

F HIK

1 000 (00) S

200 (20) D G I

220 (20) D G I
(21) DFGH KL
(22) S D GHI L N

222 (00) 5
(10) F
120) D G I
(30) P FGHIK M
(40) S DFGHIKLMN (

- G I L

3 15-19
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TAIIILE 15-7

STATES OF THE f7 CONFIGURATION

N 2S+1 R7 G2 R3

7 8 000 (00) S

6 110 (10) F

(11) P H

200 (20) D G I

4 111 (00) S
(10) F
(20) O G I

'11 (10) F
(11) P H
(20) O G I
(21) DFGH KL

(30) P FGHIK M

220 (20) D G 1
(21) DFGH KL
(22) 5 D GHI L N

2 100 (10) F

210 (11) P H
(20) D G I
(21) DFGH KL

221 (10) F
(11) P H
(20) D G I
(21) DFGH KL
(30) P FGHIK M
(31) PDFGHIKLMNI

F HIK

222 (00) S
(10) F
(20) D G 1
(30) P FGHIK M
(40) 5 DFGHIKLMN Q

IG I L

15-20 1
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16. THE CRYSTAL-FIELD HAMILTONIAN

We shall consider now the case of an atom or ion in an environment such as that of a

crystal lattice.

The simplest treatment involves two basic assumptions.

The first assumption is that the electrons under consideration are localized in the
central ion, so that they do not participate in the chemical bonding to the neighboring atoms
or ions.

The second assumption considers the effect of the environment as creating an electro.
static potential due to a charge distribution around the central ion.

The assumption about the localization of the electrons implies that the basis functions
involved in the treatment are restricted to be atomic orbitals of the central ion. Accordingly,
the theory applies with greater success to the electronic states of those atoms or ions having
an incomplete electronic shell which is relatively undisturbed by the environment, such as the
transition-metal or rare-earth ions. The logical extension of the theory consists of including
among the basis functions the Ptomic orbitals of the neighboring ions, but we shall not con-
sider them at present.

The second assumption allows us to write the approximate Ilamiltonian for the ion in
the form

11= lIF + VC (16-1)

where 11 r is the Hlamiltonian of the free ion, as given previously in Eq. (15-1), and the crystal
potential VC is of the form

N

V C V (ri, Oi d (16-2)

which is a sum of N one-electron operators, symmetric under permutations of electrons, and
therefore an operator of the type F considered in Section 14.

The functional form of the one-electron function V(r, 0, () may be established by
classical arguments from a knowledge of the charge distribution which represents the effect

16-1
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of the environment. This distribution has the symmetry of a certain point group, determined

by the lattice.

The simplest assumption about the charge distribution is to consider it as a system

of point charges located at the positions of the neighboring ions. Although this is a crude

approximation, it may be refined to include more general charge distributions, still within

the framework of the simple model under consideration.

In what follows we show how symmetry arguments may be used to the greatest advan-

tage in the determination of the function V(r, 0, 0).

POTENTIAL OF A SYMMETRIC SYSTEM OF POINT CHARGES

The potential rAt the point with polar coordinates (r, 0, 4) due to a point charge q.

located at the point (R R, Oan, tA) is
Va . q. (R12 + r 2 

- 2r Y2, cos

E1 + 12__- 2 -t- cos o "R (16-3)

where w. is the angle between the unit vectors in the directions (0,, 4a) and (0, 4), so

that

COS a C. cos 8. cos 0 + sin 0. sin 0 Cos (0., -4) (16-4)

For r < Rn the potential may be expanded as a power series in r/R.

R a t w.s
Y'= -•a %', P", (cosJ)('")L(85

The coefficients Pt,(cos co.) are the Legendre polynomials ini the variable cos w.,

and may be expressed in terms of the spherical harmonics of the variables (0., 0.) and

(0, 4) by means of the addition theorem

PL (coS Wa),- 4L Y. 4 (a, Ox) ym (0, 4) (16-6)
2L+ 1 

L

16-2
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A similar expression obtains for other sets of basis functions related to the YM. by a

unitary transformation. If we choose an equivalent system of basis functions which are sym-

metry functions for a certain point group, the addition theorem may be expressed in the form

1 (Cos W() m 4r I SO -ay) M (L1ay) (0 (721 , I I', (8. <.) .. L (, 6)(16-7)

(Lay (2O o~ ) 1. .1 1 a / t 
I

s(1 aev)

where the Sit are the symmetry functions considered in Section 7. The index y runs over

all the irreducible representations I contained in the (reditcible) representation afforded by

the YM for the given value of I.. If the representation P is contained ny times, the index a

assumes n different values.

Consider next a system ofn identical point charges, q. = q, (a = 1, 2, .. , n), dis-

tributed about the origin according to the symmetry of a given point group, so that R. = R.

Under the symmetry operations R, a typical point charge with coordinates (R, 6., $,.)

will transform at least once into any other of the set. In those particular cases where the

charges are located on certain elements of symmetry such as axes, planes, etc., there will

be a certain number, h0, of operations which leave a typical point invariant. These operations

form a subgroup, and we shall have

n h0 - h (16-8)

where h is the number of operations of the group.

The potential due to such a system of point charges may be written as

V ýI Ti RV %A (16-9)
h0  R R

This may also be expressed as follows

V=n P(AI) V. (16-10)

where

I () Y. R (16-11)

is the projection operator for the totally symmetric representation, A,, of the group. When

16-3
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this operates on the coefficients PL(Cos Owa) expressed in the form of Eq. (16-7), only tile

totally symmetric terms survive

pO(A 1) p L (Cos •'a L4, X S (L aA1) aO, O,) (L a A) (0, 0) (16-12)
2L +l a

The expression for the potential due to one set of n equivalent point charges q, takes

the form

V(rO 4 n-) 0 (RL 1. r7 x S(La^1)(O.,a ,)* s(LaAl) (0, 9S) (16-13)
R 2L+ 1 a

In the case of a crystal lattice, it is often necessary to consider more than one set of

identical charges, and we shall need to assign an index s, which labels the different sets,

to the pertinent variables in Eq. (16-13). The total potential is obtained by adding over all

the sets s of identical point charges. The final expression obtained may be written in the

form

V (r, 0, rL) = . rL , Q(La) k(La) (0, ch) (16-14)
L=O. 0

In this expression the et(La) functions are defined as

(La) S (LaA1 ) (16.15)
ý 2L ;

and therefore are related to the c () operators in the same way that the S(MaaA1) are related

to the spherical harmonics. The index A 1 has been suppressed with the understanding that

the Ai(La) are the totally symmetric functions,

The coefficents (,(La) are lattice sums extending over all sets of equivalent point

charges

(I(L a) _- n q 1 (La) (16-16)

where the variables 0a., 41a, are the polar coordinates of an arbitrary point charge a of

the equivalent set s.

In the case of a continuous charge distribution the summation in Eq. (16-17) is replaced

by the corresponding integral. It may be remarked that this does not change the form of the

16-4
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I expansion for th;c potential given by Eq. (16-14), but only the values of the coefficients

As an example, the contributions (I(L) to the coefficients in the expansion of the

potential in cubic symmetry are given in Table 16-1 for the most common sets of equivalent

point charges usually considered and L < 6. The totally symmetric functions are
S0

S(°) YO

( 1. -.r'4 Y: ± •5(Y + Y:4 ) (16-17)

4 (y 4

I

1
I
I
I
I
I
I

I

1 16-5
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TABLE 16-1

POTENTIALS FOR EQUIVALFNMT SETS OF POINT CHARGES- CIFIIC GROUP 0

n 6 12

(x, y, z) (0, 0, a) (a, 0, a) (a, a, a)

R a \/ avla

4 0 0 fr/4

sin e 0 T7'07
cos 1 "".T7T

32 18

4 3

1 24 3713 6 9

f-4ýj- (yI + y4 0 7 v %1
13 6128 9

y ) (y4+ yZ4 )1 1-
13 6 6

(1(0) 6 6 J,-C-L-?

(1(6) 39 -L 32K1
S2 a7  

-64 a7  729 R7

16-6
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TlTHE MATRIX ELEMENTS OF VC

The enetgy corresponding to the crystal field term VC is found to be very often of a

magnitude comparable to the energy separation between states of the free ion. This implies

that the crystal field term may not be treated as a small perturbation of the free ion Hamil-

tonian. It is usually necessary to determine all the matrix elements of Vc between the basis

il functions considered in a particular problem, and solve the secular determinant corresponding

to the Hlamiltonian matrix.

This offers no great difficulties for the simplest electronic configurations, but as the

number of electrons increases the number of basis functions increases very rapidly. As an

jexample, the numbers of basis functions for the dN configurations are indicated in Table 16-2.

TABLE 16-2

I dN (ONFIGURATIONS . NUMBIFR OF BASIS FUNCTIONS

Without spin With spin

N L-states LML-functions J-states JM-functions

11 1 5 2 10

2 5 25 9 45

3 8 50 19 120

4 16 100 34 210

5 16 100 37 252I
Configurations with several electrons are of no less importance than the simplest

j ones. Thus, for example, the states of the Fe+++ ion belong to the d5 configuration and

those of Fe + to d6 (d4 hole configuration). However, in general not all the electronic
states are of interest, and some of them have not even been observed experimentally in the

free ions.

I In view of the considerable amount of work involved in the several-electron case, it
is important to consider carefully the computational scheme to be used. In order to simplify the

treatment it is convenient to take advantage of symmetry considerations to the largest

possible extent.

The main steps to be followed may be briefly described as follows:

I
1 16-7
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a) Selection of a set of one-e!ectron basis functions which is complete to

the approximation desired.

b) Formation of all possible products of N one-electron functions.

c) Antisymetrization with respect to permutations of electron indices.

d) Construction of linear combinations of product functions which belong
to the different irreducible representations of the symmetry group of
the Hlamiltonian.

e) Computation of the matrix elements of the Hiamiltonian operator between
symmetry functions.

f) Calculation of eigenvalues by solving the secular dcterminant corresponding
to the Hlamiltonian matrix, and determination of the eigenfunctions.

g) Calculation of the matrix elements of other operators of interest, transition
probabilities, etc.

This only represents an outline of the different processes involved, but it is not

meant to imply that the order in which they are listed is the most convenient in practice.

The most difficult step is the determination of the matrix elements of all the operators in-

volved in the expression for the liamiltonian and it is therefore of prime importance to per-

form this in the simplest scheme possible.

If one considers the Hlamiltonian of an ion in a crystal lattice, the terms in H F, corre-

sponding to the free ion energy, are spherically symmetric, while the crystal field term VC

has the lower symmetry of one of the point groups. It is evident that the matrix elements of

H F are most conveniently determined in a set of spherical basis functions. Although the

term VC is not spherically symmetric, it may be expressed as a sum of terms each with

different but definite transformation properties under rotations. This is simply accomplished

when the functions A(La) are expressed in terms of spherical harmonics. The matrix elements

of the different terms in this sum may be obtained without great difficulties in spherical basis.

In fact, if the reduced matrix elements are known, the application of the Wigner-Eckart theorem

in spherical basis is straightforward.

If this scheme is followed, the transformation of the Hamiltonian to the basis appro-

priate to the point group of VC may be accomplished by a similarity transformation. The

transformation between spherical basis functions and the symmetry functions of a given

point group is rather simple, as it is diagonal in all the quantum numbers except M, and the

matrix elements depend only on J, M, and the particular point group in question. Moreover,

this transformation may be determined once and for all, and the results have been given in

Section 7.

16-8
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According to this procedure, the problem is actually broken-up into two parts, one of

which is independent of the lattice symmetry, the other independent of electronic config-

uration, number of electrons, etc., but only on the values of J for the different states.

By exactly the same type of reasoning one easily finds the advantages of classifying

the basis functions for configurations of equivalent electrons according to those groups of

symmetry such as R,, or R 7 and G2 , previously introduced. Although the Hamiltonian is not

totally symmetric under those groups, it may be expressed as a sum of terms which belong

to irreducible representations of these groups. Thus, for example the set of fourteen operators

• y( 2 )(i) -2 e.q <2

-4•q~2(16-18)
U I 4 ,• 1 Y ( 4)(i) -4 < q •

q q -

all together form a basis for the irreducible representation (20) of the group R 5. Therefore,

in a set of basis functions classified according to the irreducible representations of R 5m
there are many matrix elements for these operators which vanish on account of symmetry,

Thus, for example, for the d5 configuration, the matrices of the corresponding crystal field

operators Iy(
2 ) (i) and I y(4) (i) have the form

(22) (21) (10)

(22)

(21) (16-19)

(10)

I where the unshaded areas correspond to the matrix elements which vanish for symmetry

reasons.

ranIn view of these considerations, we have determined the angular factor of the reduced

matrix elements of the operators which appear in the expression of the crystal potential for

I configurations of pN, dN, and fN electrons in the gSL scheme, and these are listed in the

Tables. These do not include the results for the 2L states of f5 and f7, nor the 3L and IL

I states of f6 . From these, the angular factors of the reduced matrix elements for states of

1 16-9
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the mixed configurations may be obtained by s!,mple coupling formulae given in Section 12.

(K)The reduced matrix elements are given for the operators CQ which differ from the
corresponding operators for the spherical harmonics by inclusion of the factor (4rr/2K + 1)

= i I ! (Oi ,) (16-20)

(K)These are related to the U Q operators of Eq. (15,-7) by the relation

C(1 (K ' C(K) I ) U(K) (16-21)

where

( c 4') ((-1) (2,t 1) K (16-22)\0 0 0)

For K odd, the C(Q operators have vanishing matrix elements between states of the

configurations of equivalent electrons, since the reduced matrix elements of the corresponding

one-electron operators c vanish according to Eq. (16-22). However, the reduced matrix
(K)elements of the U Q operators do not vanish and these are given in the Tables. The sign

of the reduced matrix elements of these operators determines the choice of phases for the

states.

The states are classified according to gSL, as this is the best choice for the general

case. If the spin-orbit coupling is to be treated rigorously it is convenient to operate in the

IaJM) basis. In this case the reduced matrix elements may be easily obtained from those
listed by means of the coupling formulae of Section 12, in particular Eq. (12-16). The 6-j

symbols which appear in these formulae have not been tabulated on account of their large

number. In our scheme of calculations the needed 6-j symbols are computed by use of a pro-
gram for the IBM electronic computer.
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APPENDIX AI
LEGENDRE POLYNOMIALS (UNNORMALIZED)

I Definition:

P, 4(x) 1 d ( 2 I)" (A-I)

Genera! expression:

P4,X) 13.5 .... (2V -1) [xt_t(t,-1) ,t-2

+ t(t- 1) (t-2) (t-+3) xt- 4 (A-2)
2.4. (24.- ) (2t.- 3)

St(t- 1) (,t-2)(,-3)(,t-4)(,t-5)x1 6 +6
2.4.6. (2t•- 1) (2t- 3)(2t- 5)

TABLE A-1
LEGENDRE POLYNOMIALS

PO(x) = 1

P1 (x)) x

P2 (x) = -(3x2 -1)

P3(x) = j (5x0 - 3x)

I P4(x) - + (35 x4- 3 0x2 + 3 )

j P5(x) = (630,'-7o00 15x)

P6(x) = -L (231x6 - 315x 4 + 105X2 - 5)
16

P7 (x) - I (429x 7 - 693x 5 + 315x3 - 35x)
16

P8 (x) = 1.8 (6435x8 - 12012x6 + 6930x4 - 126012 + 35)
128

A-1

I



Another convenient form in terms of the cosines of the angles nO, is

PX.(cos) 15 (2 t.L-J.) [2 cos C ,.0-.0
2.4.6. .2 t

1 2 cos(-2) 0 -+ 2 os (- 4) 0 (-3)T1.(2 c-1) 1.-2.(2 ý- 1) (2,t -3)

+2 1.3.5 t (t- 1) (Y,- 2) o±2-cos (t-6)O0 +.... ]
1.2.3 (2f--1)(2t-.3)(2t-5)

TABLE A-2
LEGENDRE POLYNOMIALS

P 0 (cos 0)= 1

P I (cos 0) = cos 0

P 2 (cos 0)= 1 (3 cos 201 1)

P (cos 0)- = (5cos 30 1 3 cos 0)

P 4 (cos 0)= -.L (35 cos 40 1 20 cos 20+9)
64

P5 (cos 0) = -L (63 cos 50 . 35 cos 30 + 30 cos 0)
128

P 6 (cos 0) = 3 (231 cos 60 + 126 cos 40 + 105 cos 20 + 50)

P7 (coS 0) = j-• (429 cos 70 . 231 Cos 50 + 189 cos 30 + 175 cos 0)

PI (cos 0) = T (6435 cos 80 + 3432 Cos 60 + 2772 cos 40 + 2520 Cos 20 + 1225)

NORMALIZED ASSOCIATED LEGENDRE POLYNOMIALS

Definition:

I r 12 ) 2 mi ( X 2 -2t ( A -4 )2x .•,I T 2 (t+m)! dx

'and m are integers and 0 < m : i. The expression also has a meaning for negative m,
but e' (x) and e•m(x) are not independent. j

A-2 I.
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e,"(X) 1), O(x) (A-5)

The St are single-valued, continuous, and quadraticadly integrable in the interval -1 <x <1.

Orthogonality:

Other properties.

The 0' (x) are real functions.

e (-x) -- (- m ) ) m (x)
= ( -t(re7(x))

General expression: (for x = cos 0)
0' = -i •~ (2,! 0 / •1 1 [---IJ(Cos 0)t-= (-sin O)m 2,•1 (,C-m)! 2 t + in)l

({-ni)(t-,-m-1) (Cos 0)t- m-2 (A-8)
2 (2 1- 1)

+ (t- m)(tC-.m-1)(t- n -2)( ,-m-3)(cos 0)t- -42.-4.- (2t- 1) (2 t--3)

SPHERICAL HARMONICSI D ejinit ion:

eim9•IZ Yf(,0)= 7 .- (~ Cos 0) (A -9)

tC and m are integers, and - C < m < -C. There are 2t -1 1 independent functions for a given

value of -C.

I Y(0,,)* (-1)m Y"' (, 0) (A-10)

Orthonormality.

2" do J o y (0,,q)* Y' (0,0) sin 0(d0 , '.f , amm (A-i1)
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Addition Theorem:
4 r

Pt (Cos o) _ 2_+---'-[" __ yn, (002,0 ) (A-12)

where 0 is the angle between the unit vectors in the directions (01,01) and (0 2 ,0h2). Pt(cos 0)

is the unnormalized Legendre polynomial of degree t. For x = cos 0,

PC(x) = 2. ) 2(X)+ Y (0, 0) (A-13)

TABLE A-3
SPHERICAL HARMONICS

Y-0-
0

y= . ---_.2 sin 0.e e
1 2 4w

S- --3-. cns0

y2 0ý i'0e2

2 4/Y2 1 --"2 .3 .sin Ocs0.ec2 o

2 -2 ý4w

Yo -_ = (3 cos 2 0-_ 1)
2 2 A4 F

yV 3 = _.5 -. sin3 0.e'3'
3 4 ) 41.,

y2 .i /7_ 2 .3 • 5 sin2 0 • cos 0 .ei2
3 4 ý41T

Y I = _..L4 )F - • sin 0 (5 cos2 0 - 1) .elo

3 4 '41

y _ mL , (5cos30-3cos0)
A 2-

} A-4



II
I

I TABLE A-3
SPItERICAL, HARMONICS

(Continued)

4 Tr r- 7 2, 5 • 7 sin4o. 0 -e'44

1 PTý 2.5.7 sin 0 co-,0 .e

y4 4 1 ý . sin 0 .(7cos3 0-3cos 0). ei'
0 4 _ 44C

I o4 .. ýf- -(35cos4 0"- 30c ; 2 0+3)

4 8 'v4)7

y 41L 7 7 •sin50. ei5'1

I Y4 2 5. .__s 11in40.Cos 0'ei40
S 16 4

5 - 1 , 5 .7 sin 3 0 (9 cos 2 0- 1) , e

16 t

Y2 . 2. 3 5 . 7 sin2 0 (3 cos3 0- cos 0) C12,

'Y 12 .3 5 sin 0 (21 cos 4 0-14 cos 2 0+t) .1

yo 0 =841"/ (63 cos5O- 70 c,83 0+ 15 cos 0)

6 13-'2- • r .7 _. 11 s

y4 = ' 13 .7 n4 0 (11 cos2 O-1) ei4O
32

I = 1. 3 3 5.7 sin0(11 cos3 0- 3 cos 0) . ei3o

I6 32, 7 i
y 2 1 "1312 5S6= 3F- ,F- / -- ' 3 - 5 "7 sin2 0 (33 cos4 O-_ 18 cos2 0 + 1) ' e12
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TABLIE A-3

SPHIRICAI. HARMONICS

(Continued)

y 13 L 2 3 - 7 sit, 0 (33 cos 5 0- 30 cos 3 0 + 5 cos 0). e'O
6 16 6 4,

Y 1 1-.- (3, 7.11 ,cos6 0-5.7. cos 4 0+3 + 5.7cos2O-5)6 16 ý4r

To obtain expression in cartesian coordinates, use the relations:

Cos 0- ' sintm 0, e±imo = I- - -vm (A-140
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